Accès gratuit
Numéro
Med Sci (Paris)
Volume 18, Numéro 12, Décembre 2002
Page(s) 1219 - 1226
Section M/S Revues : Articles de Synthèse
DOI https://doi.org/10.1051/medsci/200218121219
Publié en ligne 20 octobre 2010
  1. Earnshaw WC, Bernat RL. Chromosomal passengers: toward an integrated view of mitosis. Chromosoma 1991; 100: 139–46.
  2. Wittmann T, Hyman A, Desai A. The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 2001. 3: E28–34.
  3. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997; 13: 83–117.
  4. Le Peuch C, Dorée M. Le temps du cycle cellulaire. Med Sci 2000; 16: 461–8.
  5. Verde F, Labbé JC, Dorée M, Karsenti E. Regulation of microtubule dynamics by cdc2 protein kinase in cellfree extracts of Xenopus eggs. Nature 1990; 343: 233–8.
  6. Vasquez RJ, Gard DL, Cassimeris L. Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cell Motil Cytoskeleton 1999; 43: 310–21.
  7. Karsenti E. Vers une description du mécanisme d’assemblage du fuseau mitotique à l’échelle moléculaire. Med Sci 1993; 9: 131–9.
  8. Nicklas RB, Gordon GW. The total length of spindle microtubules depends on the number of chromosomes present. J Cell Biol 1985; 100: 1–7.
  9. Zhang D, Nicklas RB. Chromosomes initiate spindle assembly upon experimental dissolution of the nuclear envelope in grasshopper spermatocytes. J Cell Biol 1995; 131: 1125–31.
  10. Sawin KE, Mitchison TJ. Mitotic spindle assembly by two different pathways in vitro. J Cell Biol 1991; 112: 925–40.
  11. Dogterom M, Felix MA, Guet CC, Leibler S. Influence of M-phase chromatin on the anisotropy of microtubule asters. J Cell Biol 1996; 133: 125–40.
  12. Karsenti E, Newport J, Kirschner M. Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J Cell Biol 1984; 99: 47s–54.
  13. Heald R, Tournebize R, Blank T, et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 1996; 382: 420–5.
  14. Karsenti E. Mitotic spindle morphogenesis in animal cells. Semin Cell Biol 1991; 2: 251–60.
  15. Khodjakov A, Cole RW, Oakley BR, Rieder CL. Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 2000; 10: 59–67.
  16. Lawler S. Microtubule dynamics: if you need a shrink try stathmin/Op18. Curr Biol 1998; 8: R212–4.
  17. Andersen SS, Ashford AJ, Tournebize R, et al. Mitotic chromatin regulates phosphorylation of Stathmin/Op18. Nature 1997; 389: 640–3.
  18. Budde PP, Kumagi A, Dunphy WG, Heald R. Regulation of Op18 during spindle assembly in Xenopus egg extracts. J Cell Biol 2001; 153: 149–58.
  19. Carazo-Salas RE. Ran ou le parfum de la chromatine. Med Sci 2001; 17: 1056–60.
  20. Mattaj IW, Englmeier L. Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 1998; 67: 265–306.
  21. Dorseuil O. Petite protéine G Ran et contrôle de l’import-export nucléaire. Med Sci 1998; 14: 85–9.
  22. Carazo-Salas RE, et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 1999. 400: 178–81.
  23. Carazo-Salas RE, Guarguaglini G, Gruss OJ, et al. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol 2001; 3: 228–34.
  24. Guarguaglini G, Renzi L, D’Ottavio F, et al. Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo. Cell Growth Differ 2000; 11: 455–65.
  25. Fleig, U, Salus SS, Karig I, Sazer S. The fission yeast ran GTPase is required for microtubule integrity. J Cell Biol 2000; 151: 1101–11.
  26. Endow SA. Microtubule motors in spindle and chromosome motility. Eur J Biochem 1999; 262: 12–8.
  27. Antonio C, Ferby I, Wilhelm H, et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 2000; 102: 425–35.
  28. Vernos I, Raats J, Hirano T, et al. Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 1995; 81: 117–27.
  29. Theurkauf WE, Hawley RS. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J Cell Biol 1992; 116: 1167–80.
  30. Bloom K. The centromere frontier: kinetochore components, microtubulebased motility, and the CENvalue paradox. Cell 1993; 73: 621–4.
  31. Nicklas RB, Kubai DF, Hays TS. Spindle microtubules and their mechanical associations after micromanipulation in anaphase. J Cell Biol 1982; 95: 91–104.
  32. Yao X., Abrieu A, Zheng Y, et al. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol 2000; 2: 484–91.
  33. McEwen BF, Chan GK, Zubrowski B, et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol Biol Cell 2001; 12: 2776–89.
  34. Cassimeris L, Salmon ED. Kinetochore microtubules shorten by loss of subunits at the kinetochores of prometaphase chromosomes. J Cell Sci 1991; 98: 151–8.
  35. Khodjakov A., Gabashvili IS, Rieder CL. « Dumb » versus « smart » kinetochore models for chromosome congression during mitosis in vertebrate somatic cells. Cell Motil Cytoskeleton 1999; 43: 179–85.
  36. Desai A, Maddox PS, Mitchison TJ, et al. Anaphase A chromosome movement and poleward spindle microtubule flux occur At similar rates in Xenopus extract spindles. J Cell Biol 1998; 141: 703–13.
  37. Kirschner M, Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell 1986; 45: 329–42.
  38. Dujardin D, Wacker UI, Moreau A, et al. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J Cell Biol 1998; 141: 849–62.
  39. Rieder CL, Alexander SP. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol 1990; 110: 81–95.
  40. Wojcik E, Basto R, Serr M, et al. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nat Cell Biol 2001; 3: 1001–7.
  41. Schaar BT, Chan GK, Maddox R, et al. CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol 1997; 139: 1373–82.
  42. Lombillo VA, Stewart RJ, Mc Intosh JR, et al. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J Cell Biol 1995; 128: 107–15.
  43. Wordeman L, Mitchison TJ. Identification and partial characterization of mitotic centromere- associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 1995; 128: 95–104.
  44. Walczak CE, Mitchison TJ, Desai A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 1996; 84: 37–47.
  45. Maney T, Hunter AW, Wagenbach M, Wordeman L. Mitotic centromere associated kinesin is important for anaphase chromosome segregation. J Cell Biol 1998; 142: 787–801.
  46. Kalab P, Weis K, Heald R. Vizualisation of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 2002; 295: 2452–6.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.