Free Access
Issue |
Med Sci (Paris)
Volume 18, Number 12, Décembre 2002
|
|
---|---|---|
Page(s) | 1227 - 1235 | |
Section | M/S Revues : Articles de Synthèse | |
DOI | https://doi.org/10.1051/medsci/200218121227 | |
Published online | 15 December 2002 |
- Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997; 13: 83–117. [Google Scholar]
- Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature 1984; 312: 237–42. [Google Scholar]
- Carlier MF. Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules. Int Rev Cytol 1989; 115: 139–70. [Google Scholar]
- Hyman AA, Salser S, Drechsel DN, Unwin N, Mitchison TJ. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol Biol Cell 1992; 3: 1155–67. [Google Scholar]
- Chrétien D, Jànosi, I, Taveau, JC, Flyvberg, H. Microtubule’s conformational cap. Cell Struct Funct 1999; 24: 299–303. [Google Scholar]
- Belmont LD, Hyman AA, Sawin KE, Mitchison TJ. Realtime visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 1990; 62: 579–89. [Google Scholar]
- Verde F, Dogterom M, Stelzer E, Karsenti E, Leibler S. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J Cell Biol 1992; 118: 1097–108. [Google Scholar]
- Ohkura H, Garcia MA, Toda T. Dis1/TOG universal microtubule adaptors : one MAP for all? J Cell Sci 2001; 114: 3805–12. [Google Scholar]
- Andersen SS. Spindle assembly and the art of regulating microtubule dynamics by MAP and Stathmin/Op18. Trends Cell Biol 2000; 10: 261–7. [Google Scholar]
- Schuyler SC, Pellman D. Microtubule « plus-endtracking proteins »: the end is just the beginning. Cell 2001; 105: 421–4. [Google Scholar]
- Sobel A. Stathmin: a relay phosphoprotein for multiple signal transduction? Trends Biochem Sci 1991; 16: 301–5. [Google Scholar]
- Belmont LD, Mitchison TJ. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 1996; 84: 623–31. [Google Scholar]
- Cassimeris L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 2002; 14 : 18–24. [Google Scholar]
- Schubart UK, Yu J, Amat JA, Wang Z, Hoffmann MK, Edelmann W. Normal development of mice lacking metablastin (P19), a phosphoprotein implicated in cell cycle regulation. J Biol Chem 1996; 14: 14062–6. [Google Scholar]
- Desai A, Verma S, Mitchison TJ, Walczak CE. Kin I kinesins are microtubule-destabilizing enzymes. Cell 1999 : 96: 69–78. [Google Scholar]
- Wordeman L, Mitchison TJ. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 1995; 128: 95–104. [Google Scholar]
- Quarmby LM, Lohret TA. Microtubule severing. Cell Motil Cytosk 1999; 43: 1–9. [Google Scholar]
- Tournebize R, Andersen SS, Verde F, Doree M, Karsenti E, Hyman AA. Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. EMBO J 1997; 16: 5537–49. [Google Scholar]
- Tournebize R, Popov A, Kinoshita K, et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol 2000; 2 : 13–9. [Google Scholar]
- Kinoshita K, Arnal I, Desai A, Drechsel DN, Hyman AA. Reconstitution of physiological microtubule dynamics using purified components. Science 2001; 294: 1340–3. [Google Scholar]
- Severin F, Habermann B, Huffaker T, Hyman T. Stu2 promotes mitotic spindle elongation in anaphase. J Cell Biol 2001; 153: 435–42. [Google Scholar]
- Wittmann T, Hyman AA, Desai A. The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 2001; 3: E28–34. [Google Scholar]
- Sablin HP. Kinesins and microtubules: their structures and motor mechanisms. Curr Opin Cell Biol 2000; 12 : 35–41. [Google Scholar]
- Hirokawa N, Noda Y, Okada Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol 1998; 10: 60–73. [Google Scholar]
- Heald R, Walczak CE. Microtubule-based motor function in mitosis. Curr Opin Struct Biol 1999; 9: 268–74. [Google Scholar]
- Karki S, Holzbaur ELG. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 1999; 11 : 45–53. [Google Scholar]
- Walczak CE, Vernos I, Mitchison TJ, Karsenti E, Heald R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr Biol 1998; 8: 903–13. [Google Scholar]
- Heald R, Tournebize R, Blank T, et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 1996; 382: 420–5. [Google Scholar]
- Merdes A, Heald R, Samejima K, Earnshaw WC, Cleveland DW. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J Cell Biol 2000; 149: 851–62. [Google Scholar]
- Wittmann T, Wilm M, Karsenti E, Vernos I. TPX2, a novel xenopus MAP involved in spindle pole organization. J Cell Biol 2000; 149: 1405–18. [Google Scholar]
- Robinson JT, Wojcik EJ, Sanders MA, McGrail M, Hays TS. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J Cell Biol 1999; 146: 597–608. [Google Scholar]
- Boleti H, Karsenti E, Vernos I. Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 1996; 84: 49–59. [Google Scholar]
- Hyman AA, Karsenti E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 1996; 84: 401–10. [Google Scholar]
- Wood, KW, Cornwell WD, Jackson JR. Past and future of the mitotic spindle as an oncology target. Curr Opin Pharmacol 2001; 1: 370–7. [Google Scholar]
- He L, Orr GA, Horwitz SB. Novel molecules that interact with microtubules and have functional activity similar to Taxol. Drug Discov Today 2001; 6: 1153–64. [Google Scholar]
- Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res 1996; 56: 816–25. [Google Scholar]
- Sakowicz R, Berdelis MS, Ray K, et al. A marine natural product inhibitor of kinesin motors. Science 1998; 280: 292–5. [Google Scholar]
- Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype based screen. Science 1999; 286: 971–4. [Google Scholar]
- Kapoor TM, Mayer TU, Coughlin ML, Mitchison TJ. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 2000; 150: 975–88. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.