Free Access
Issue
Med Sci (Paris)
Volume 18, Number 12, Décembre 2002
Page(s) 1237 - 1244
Section M/S Revues : Articles de Synthèse
DOI https://doi.org/10.1051/medsci/200218121237
Published online 15 December 2002
  1. Mattaj IW, Englmeier L. Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 1998; 67: 265–306. [Google Scholar]
  2. Goldstein L. Localization of nucleus-specific protein as shown by transplantation experiments in Amoebæ proteus. Exp Cell Res 1958; 15: 635–7. [Google Scholar]
  3. Schmidt-Zachmann MS, Dargemont C, Kuhn LC, Nigg EA. Nuclear export of proteins: the role of nuclear retention. Cell 1993; 74: 493–504. [Google Scholar]
  4. Nakielny S, Dreyfuss G. The hnRNP C proteins contain a nuclear retention sequence that can override nuclear export signals. J Cell Biol 1996; 134: 1365–73. [Google Scholar]
  5. Michael WM, Choi M, Dreyfuss G. A nuclear export signal in hnRNP A1: a signal mediated, temperature dependent nuclear protein export pathway. Cell 1995; 83: 415–22. [Google Scholar]
  6. Wen W, Meinkoth JL, Tsien RY, Taylor SS. Identification of a signal for rapid export of proteins from the nucleus. Cell 1995; 82: 463–73. [Google Scholar]
  7. Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995; 82: 475–83. [Google Scholar]
  8. Wolff B, Sanglier JJ, Wang Y. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleocytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem Biol 1997; 4: 139–47. [Google Scholar]
  9. Fornerod M, Ohno M, Yoshida M, Mattaj IW. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 1997; 90: 1051–60. [Google Scholar]
  10. Fukuda M, Asano S, Nakamura T, et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997; 390: 308–11. [Google Scholar]
  11. Ossareh-Nazari B, Bachelerie F, Dargemont C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 1997; 278: 141–4. [Google Scholar]
  12. Stade K, Ford CS, Guthrie C, Weis K. Exportin 1 (CRM1p) is an essential nuclear export factor. Cell 1997; 90: 1041–50. [Google Scholar]
  13. Kutay U, Bischoff FR, Kostka S, Kraft R, Gorlich D. Export of importin a from the nucleus is mediated by a specific nuclear transport factor. Cell 1997; 90: 1061–71. [Google Scholar]
  14. Lipowsky G, Bischoff FR, Schwarzmaier P, et al. Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J 2000; 19: 4362–71. [Google Scholar]
  15. Brownawell AM, Macara IG. Exportin 5, a novel karyopherin, mediates nuclear export of double stranded RNA binding proteins. J Cell Biol 2002; 156: 53–64. [Google Scholar]
  16. Yoshida K, Blobel G. The karyopherin Kap142p/Msn5p mediates nuclear import and nuclear export of different cargo proteins. J Cell Biol 2001; 152: 729–40. [Google Scholar]
  17. Mingot JM, Kostka S, Kraft R, Hartmann E, Gorlich D. Importin 13: a novel mediator of nuclear import and export. EMBO J 2001; 20: 3685–94. [Google Scholar]
  18. Black BE, Holaska JM, Rastinejad F, Paschal BM. DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr Biol 2001; 11: 1749–58. [Google Scholar]
  19. Azuma Y, Dasso M. The role of Ran in nuclear function. Curr Opin Cell Biol 2000; 12: 302–7. [Google Scholar]
  20. Lindsay ME, Holaska JM, Welch K, Paschal BM, Macara IG. Ran-binding protein 3 is a cofactor for CRM1mediated nuclear protein export. J Cell Biol 2001; 153: 1391–402. [Google Scholar]
  21. Rexach M, Blobel G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 1995; 83: 683–92. [Google Scholar]
  22. Allen N P, Huang L, Burlingame A, Rexach MF. Proteomic analysis of nucleoporin interacting proteins. J Biol Chem 2001; 153: 29268–74. [Google Scholar]
  23. Rout M P, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y , Chait BT. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 2000; 148: 635–51. [Google Scholar]
  24. Ribbeck K, Gorlich D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J 2001; 20: 1320–30. [Google Scholar]
  25. Kehlenbach RH, Dickmanns A, Kehlenbach A, Guan T, Gerace L. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J Cell Biol 1999; 145: 645–57. [Google Scholar]
  26. Black BE, Holaska JM, Levesque L, et al. NXT1 is necessary for the terminal step of CRM1-mediated nuclear export. J Cell Biol 2001; 152: 141–55. [Google Scholar]
  27. Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 1995; 270: 14209–13. [Google Scholar]
  28. Yokoyama N, Hayashi N, Seki T, et al. A giant nucleopore protein that binds Ran/TC4. Nature 1995; 376: 184–8. [Google Scholar]
  29. Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 1997; 88: 97–107. [Google Scholar]
  30. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 2000; 18: 621–63. [Google Scholar]
  31. Arenzana-Seisdedos F, Turpin P, Rodriguez M, et al. Nuclear localization of IκBα promotes active transport of NF-κB from the nucleus to the cytoplasm. J Cell Sci 1997; 110: 369–78. [Google Scholar]
  32. Johnson C, Van Antwerp D, Hope TJ. An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IκBα. EMBO J 1999; 18: 6682–93. [Google Scholar]
  33. Tam WF, Lee LH, Davis L, Sen R. Cytoplasmic sequestration of rel proteins by IκBα requires CRM-dependent nuclear export. Mol Cell Biol 2000; 20: 2269–84. [Google Scholar]
  34. Rodriguez MS, Thompson J, Hay RT, Dargemont C. Nuclear retention of IκBα protects it from signal induced degradation and inhibits NF-κB transcriptional activation. J Biol Chem 1999; 274: 9108–15. [Google Scholar]
  35. Yang J, Kornbluth S. All aboard the cyclin train: subcellular trafficking of cyclins and their Cdk partners. Trends Cell Biol 1999; 9: 207–10. [Google Scholar]
  36. Hagting A, Karlsson C, Clute P, Jackman M, Pines J. MPF localization is controlled by nuclear export. EMBO J 1998; 17: 4127–38. [Google Scholar]
  37. Toyoshima F, Moriguchi T, Wada A, Fukuda M, Nishida E. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J 1998; 17: 2728–35. [Google Scholar]
  38. Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, Kornbluth S. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev 1998; 12: 2131–43. [Google Scholar]
  39. Toyoshima-Morimoto F, Taniguchi E, Shinya N, Iwamatsu A, Nishida E. Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 2001; 410: 215–20. [Google Scholar]
  40. Lopez-Girona A, Furnari B, Mondesert O, Russell P. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 1999; 397: 172–5. [Google Scholar]
  41. Graves PR, Lovly CM, Uy GL, Piwnica-Worms H. Localization of human Cdc25C is regulated both by nuclear export and 14- 3-3 protein binding. Oncogene 2001; 20: 1839–51. [Google Scholar]
  42. Pruyne D, Bretscher A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci 2000; 113: 365–75. [Google Scholar]
  43. Gulli MP, Peter M. Temporal and spatial regulation of Rho-type guanine nucleotide exchange factors: the yeast perspective. Genes Dev 2001; 15: 365–79. [Google Scholar]
  44. Nern A, Arkowitz RA. Nucleocytoplasmic shuttling of the Cdc42p exchange factor Cdc24p. J Cell Biol 2000; 148: 1115–22. [Google Scholar]
  45. Henchoz S, Chi Y, Catarin B, Herskowitz I, Deshaies RJ, Peter M. Phosphorylation and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev 1997; 11: 3046–60. [Google Scholar]
  46. Blondel M, Galan JM, Chi Y, et al. Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4. EMBO J 2000; 19: 6085–97. [Google Scholar]
  47. Blondel M, Alepuz PM, Huang LS, Shaham S, Ammerer G, Peter M. Nuclear export of Far1p in response to pheromones requires the export receptor Msn5p/Ste21p. Genes Dev 1999; 13: 2284–300. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.