Free Access
Med Sci (Paris)
Volume 18, Number 12, Décembre 2002
Page(s) 1245 - 1256
Section M/S Revues : Articles de Synthèse
Published online 15 December 2002
  1. Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 2000; 14: 2551–69. [Google Scholar]
  2. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000; 14: 121–41. [Google Scholar]
  3. Grange T, Bertrand E, Espinas ML, et al. In vivo footprinting of the interaction of proteins with DNA and RNA. Methods 1997; 11: 151–63. [Google Scholar]
  4. Orlando V. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 2000; 25: 99–104. [Google Scholar]
  5. Cosma MP, Tanaka T, Nasmyth K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 1999; 97: 299–311. [Google Scholar]
  6. Krebs JE, Fry CJ, Samuels ML, Peterson CL. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell 2000; 102: 587–98. [Google Scholar]
  7. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 2000; 103: 667–78. [Google Scholar]
  8. Hassan AH, Neely KE, Workman JL. Histone acetyltransferase complexes stabilize SWI/SNF binding to promoter nucleosomes. Cell 2001; 104: 817–27. [Google Scholar]
  9. Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 1999; 98: 675–86. [Google Scholar]
  10. Shang Y, Hu X, DiRenzo J,Lazar MA, Brown M. Cofactor dynamics and sufficiency in estrogen receptor-regulatedtranscription. Cell 2000;103: 843–52. [Google Scholar]
  11. Grange T, Cappabianca L, Flavin M, Sassi H, Thomassin H. In vivo analysis of the model tyrosine aminotransferase gene reveals multiple sequential steps in glucocorticoid receptor action. Oncogene 2001; 20: 3028–38. [Google Scholar]
  12. Rigaud G, Roux J, Pictet R, Grange T. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell 1991; 67: 977–86. [Google Scholar]
  13. Thomassin H, Flavin M, Espinas ML, Grange T. Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J 2001; 20: 1974–83. [Google Scholar]
  14. Misteli T. Protein dynamics: implications for nuclear architecture and gene expression. Science 2001; 291: 843–7. [Google Scholar]
  15. Phair RD, Misteli T. High mobility of proteins in the mammalian cell nucleus. Nature 2000; 404: 604–9. [Google Scholar]
  16. Kimura H, Cook PR. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol 2001; 153: 1341–53. [Google Scholar]
  17. Misteli T, Gunjan A, Hock R, Bustin M, Brown DT. Dynamic binding of histone H1 to chromatin in living cells. Nature 2000; 408: 877–81. [Google Scholar]
  18. Tumbar T, Sudlow G, Belmont AS. Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol 1999; 145: 1341–54. [Google Scholar]
  19. Tumbar T, Belmont AS. Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol 2001; 3: 134–9. [Google Scholar]
  20. McNally JG, Muller WG, Walker D, Wolford R, Hager GL. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 2000; 287: 1262–5. [Google Scholar]
  21. Muller WG, Walker D, Hager GL, McNally JG. Large-scale chromatin decondensation and recondensation regulated by transcription from a natural promoter. J Cell Biol 2001; 154: 33–48. [Google Scholar]
  22. Stenoien DL, Nye AC, Mancini MG, et al. Ligand mediated assembly and real-time cellular dynamics of estrogen receptor alpha-coactivator complexes in living cells. Mol Cell Biol 2001; 21: 4404–12. [Google Scholar]
  23. Lewis JD, Tollervey D. Like attracts like: getting RNA processing together in the nucleus. Science 2000; 288: 1385–9. [Google Scholar]
  24. Cremer T, CremerC. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001; 2: 292–301. [Google Scholar]
  25. Francastel C, Schubeler D, Martin DI, Groudine M. Nuclear compartmentalization and gene activity. Nat Rev Mol Cell Biol 2000; 1: 137–43. [Google Scholar]
  26. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA. Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 1999; 145: 1119–31. [Google Scholar]
  27. Verschure PJ, van Der Kraan I, Manders EM, van Driel R. Spatial relationship between transcription sites and chromosome territories. J Cell Biol 1999; 147: 13–24. [Google Scholar]
  28. Dietzel S, Schiebel K, Little G, et al. The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 1999; 252: 363–75. [Google Scholar]
  29. Volpi EV, Chevret E, Jones T, et al. Largescalechromatin organization of the majorhisto compatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 2000; 113: 1565–76. [Google Scholar]
  30. Li G, Sudlow G, Belmont AS. Interphase cell cycle dynamics of a latereplicating, heterochromatic homogeneously staining region: precise choreography of condensation/decondensation and nuclear positioning. J Cell Biol 1998; 140: 975–89. [Google Scholar]
  31. Orphanides G, Reinberg D. RNA polymerase II elongation through chromatin. Nature 2000; 407: 471–5. [Google Scholar]
  32. Csink AK, Henikoff S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 1996; 381: 529–31. [Google Scholar]
  33. Dernburg AF, Broman KW, Fung JC, et al. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 1996; 85 : 745–59. [Google Scholar]
  34. Schubeler D, Francastel C, Cimbora DM, Reik A, Martin DI, Groudine M. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev 2000; 14: 940–50. [Google Scholar]
  35. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlage M, Fisher AG. Association otranscriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 1997; 91: 845–54. [Google Scholar]
  36. Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 1999; 3: 207–17. [Google Scholar]
  37. Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST.Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev 2000; 14: 2146–60. [Google Scholar]
  38. Skok JA, Brown KE, Azuara V, et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat Immunol 2001; 2: 848–54. [Google Scholar]
  39. Lundgren M, Chow CM, Sabbattini P, Georgiou A, Minaee S, Dillon N. Transcription factor dosage affects changes in higher order chromatin structure associated with activation of a heterochromatic gene. Cell 2000; 103: 733–43. [Google Scholar]
  40. Cockell M, Gasser SM. Nuclear compartments and gene regulation. Curr Opin Genet Dev 1999; 9: 199–205. [Google Scholar]
  41. Grunstein M. Molecular model for telomeric heterochromatin in yeast. Curr Opin Cell Biol 1997; 9: 383–7. [Google Scholar]
  42. Laroche T, Martin SG, Gotta M, et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr Biol 1998; 8: 653–6. [Google Scholar]
  43. Maillet L, Boscheron C, Gotta M, Marcand S, Gilson E, Gasser SM. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev 1996; 10: 1796–811. [Google Scholar]
  44. Andrulis ED, Neiman AM, Zappulla DC, Sternglanz R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 1998; 394: 592–5. [Google Scholar]
  45. Marshall WF, Straight A, Marko JF, et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 1997; 7: 930–9. [Google Scholar]
  46. Zink D, Cremer T. Cell nucleus: chromosome dynamics in nuclei of living cells. Curr Biol 1998; 8: R321–4. [Google Scholar]
  47. Vazquez J, Belmont AS, Sedat JW. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr Biol 2001; 11: 1227–39. [Google Scholar]
  48. Heun P, Laroche T, Shimada K, Furrer P, Gasser SM. Chromosome dynamics in the yeast interphase nucleus. Science 2001; 294: 2181–6. [Google Scholar]
  49. Sadoni N, Langer S, Fauth C, et al. Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 1999; 146: 1211–26. [Google Scholar]
  50. Manders EM, Kimura H, Cook PR. Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J Cell Biol 1999; 144: 813–21. [Google Scholar]
  51. Marshall WF, Fung JC, Sedat JW. Deconstructing the nucleus: global architecture from local interactions. Curr Opin Genet Dev 1997; 7: 259–63. [Google Scholar]
  52. Moir RD, Yoon M, Khuon S, Goldman RD. Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol 2000; 151: 1155–68. [Google Scholar]
  53. Gounon P, Karsenti E. Involvement of contractile proteins in the changes in consistency of oocyte nucleoplasm of the newt Pleurodeles waltlii. J Cell Biol 1981; 88: 410–21. [Google Scholar]
  54. Gerasimova TI, Byrd K, Corces VG. A chromatin insulator determines the nuclear localization of DNA. Mol Cell 2000; 6: 1025–35. [Google Scholar]
  55. Messmer S, Franke A, Paro R. Analysis of the functional role of the Polycomb chromo domain in Drosophila melanogaster. Genes Dev 1992; 6: 1241–54. [Google Scholar]
  56. Alkema MJ, Bronk M, Verhoeven E, et al.Identification of Bmi1-interacting proteins as constituents of a multimeric mammalian polycomb complex. Genes Dev 1997; 11: 226–40. [Google Scholar]
  57. Pal-Bhadra M, Bhadra U, Birchler JA. Cosuppression in Drosophila: gene silencing of alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 1997; 90: 479–90. [Google Scholar]
  58. Fauvarque MO, Dura JM. Polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila. Genes Dev 1993; 7: 1508–20. [Google Scholar]
  59. Sullivan GJ, Bridger JM, Cuthbert A P, Newbold RF, Bickmore WA, McStayB. Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J 2001; 20: 2867–74. [Google Scholar]
  60. Cappabianca L, Thomassin H, Pictet R, Grange T. Genomic footprinting using nucleases. Meth Mol Biol 1999; 119: 427–42. [Google Scholar]
  61. Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA. Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 2002; 157: 579–89. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.