Free Access
Issue
Med Sci (Paris)
Volume 18, Number 6-7, Juin–Juillet 2002
Page(s) 717 - 724
Section M/S Revues : Articles de Synthèse
DOI https://doi.org/10.1051/medsci/20021867717
Published online 15 June 2002
  1. Van Broeckhoven C. Presenilins and Alzheimer disease. Nat Genet 1995 ; 11 : 230–2. [Google Scholar]
  2. Checler F. Presenilins: multifunctional proteins involved in Alzheimer’s disease pathology. IUBMB Life 1999 ; 48 : 33–9. [Google Scholar]
  3. Checler F. Processing of the β-amyloid precursor protein and its regulation in Alzheimer’s disease. J Neurochem 1995 ; 65 : 1431–44. [Google Scholar]
  4. Burdick D, Soreghan B, Kwon M, et al. Assembly and aggregation properties of synthetic Alzheimer’s A4/β amyloid peptide analogs. J Biol Chem 1992 ; 267 : 546–54. [Google Scholar]
  5. Mattson MP. Cellular actions of β-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 1997 ; 77 : 1081–132. [Google Scholar]
  6. Octave JN. The amyloid peptide and its precursor in Alzheimer’s disease. Rev Neurosci 1995 ; 6 : 287–316. [Google Scholar]
  7. Marambaud P, Chevallier N, Ancolio K, Checler F. Post-transcriptional contribution of a cAMP-dependent pathway to the formation of α-and β/γ-secretases-derived products of βAPP maturation in human cells expressing wild type and Swedish mutated βAPP. Mol Med 1998 ; 4 : 715–23. [Google Scholar]
  8. Vincent B, Paitel E, Saftig P, et al. The disintegrins ADAM10 and TACE contribute to the constitutive and phorbolesters-regulated normal cleavage of the cellular prion protein.J Biol Chem 2001 ; 276 : 37743–6. [Google Scholar]
  9. Lammich S, Kojro E, Postina R, et al. Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 1999 ; 96 : 3922–7. [Google Scholar]
  10. Lopez-Perez E, Zhang Y, Franck SJ, Creemers J, Seidah N, Checler F. Constitutive α-secretase cleavage of the β-amyloid precursor protein in the furin-deficient LoVo cell line: involvement of the prohormone convertase 7 (PC7) and the disintegrin metalloprotease ADAM10. J Neurochem 2001 ; 76 : 1532–9. [Google Scholar]
  11. Buxbaum JD, Liu KN, Luo Y, ét al. Evidence that tumor necrosis factor α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 1998 ; 273 : 27765–7. [Google Scholar]
  12. Lopez-Perez E, Seidah N, Checler F. A proprotein convertase activity contributes to the processing of the Alzheimer’s β-amyloid precursor protein in human cells: evidence for a rôle of the prohormone convertase PC7 in the constitutive α-secretase pathway. J Neurochem 1999 ; 73 : 2056–62. [Google Scholar]
  13. Hartmann T, Bieger SC, Bruhl B, et al. Distinct sites of intracellular production for Alzheimer’s disease Aβ40/42 amyloid peptides. Nat Med 1997 ; 3 : 1016–20. [Google Scholar]
  14. Lichtenthaler SF, Wang R, Grimm H, Uljon SN, Masters CL, Beyreuther K. Mechanism of the cleavage specificity of Alzheimer’s disease γ-secretase identified by phenylalanine-scanning mutagenesis of the transmembrane domain of the amyloid precursor protein. Proc Natl Acad Sci USA 1999 ; 96 : 3053–8. [Google Scholar]
  15. Vassar R, Citron M. Aβ-generating enzymes: recent advances in γ- and γ-secretases research. Neuron 2000 ; 27 : 419–22. [Google Scholar]
  16. Cai H, Wang Y, Mc Carthy D, et al. BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat Neurosci 2001 ; 4 : 233–4. [Google Scholar]
  17. Luo Y, Bolon B, Kahn S, et al Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci 2001 ; 4 : 231–2. [Google Scholar]
  18. Saunders AJ, Kim TW, Tanzi RE. BACE maps to chromosome 11 and a BACE homolog, BACE2, reside in the obligate down syndrome region of chromosome 21. Science 1999 ; 286 : 1254–5. [Google Scholar]
  19. Checler F. Presenilins: structural aspects and post-translational events. Mol Neurobiol 1999 ; 19 : 255–65. [Google Scholar]
  20. Capell A, Grünberg J, Pesold B, et al. The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex. J Biol Chem 1998 ; 273 : 3205–11. [Google Scholar]
  21. Loetscher H, Deuschle U, Brockhaus M, et al. Presenilins are processed by caspase-like proteases. J Biol Chem 1997 ; 272 : 20655–9. [Google Scholar]
  22. Kim TW, Pettingell WH, Jung YK, Kovacs DM, Tanzi RE. Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science 1997 ; 277 : 373–6. [Google Scholar]
  23. Vito P, Lacana E, D’Adamio L. Interfering with apoptosis: Ca2+-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 1996 ; 271 : 521–5. [Google Scholar]
  24. Grünberg J, Walter J, Loetscher H, Deuschle U, Jacobsen H, Haass C. Alzheimer’s disease associated presenilin-1 holoprotein and its 18-20 kDa C-terminal fragment are death substrates for proteases of the caspase family. Biochemistry 1998 ; 37 : 2263–70. [Google Scholar]
  25. Van Gassen G, Annaert W, Van Broekhoven C. Binding partners of Alzheimer’s disease proteins: are they physiologically relevant? Neurobiol Dis 2000 ; 7 : 135–51. [Google Scholar]
  26. Selkoe DJ. Alzheimer’s disease: genes, proteins and therapy. Physiol Rev 2001 ; 81 : 741–66. [Google Scholar]
  27. Ancolio K, Marambaud P, Dauch P, Checler F. α-secretase-derived product of β-amyloid precursor protein is decreased by presenilin 1 mutations linked to familial Alzheimer’s disease. J Neurochem 1997 ; 69 : 2494–9. [Google Scholar]
  28. Marambaud P, Chevallier N, Barelli H, Wilk S, Checler F. Proteasome contributes to the α-secretase pathway of amyloid precursor protein in human cells. J Neurochem 1997; 68 : 698–703. [Google Scholar]
  29. Alves da Costa C, Ancolio K, Checler F. C-terminal maturation fragments of presenilin 1 and 2 control secretion of APPα and Aβ by human cells and are degraded by the proteasome. Mol Med 1999 ; 5 : 160–8. [Google Scholar]
  30. Marambaud P, Alves da Costa C, Ancolio K, Checler F. Alzheimer’s disease-linked mutation of presenilin 2 (N141I-PS2) drastically lowers APPα secretion: control by the proteasome. Biochem Biophys Res Commun 1998 ; 252 : 134–8. [Google Scholar]
  31. Kim TW, Pettingell WH, Hallmark OG, Moir RD, Wasco W, Tanzi, RE. Endoproteolytic cleavage and proteasomal degradation of presenilin 2 in transfected cells. J Biol Chem 1997 ; 272 : 11006–10. [Google Scholar]
  32. Checler F. The multiple paradoxes of presenilins. J Neurochem 2001 ; 76 : 1621–7. [Google Scholar]
  33. Wolfe MS. Presenilins and γ-secretase: structure meets function. J Neurochem 2001 ; 76 : 1615–20. [Google Scholar]
  34. Herreman A, Serneels L, Annaert W, Collen D, Schoonjans L, De Strooper B. Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol 2000 ; 2 : 461–2. [Google Scholar]
  35. Zhang Z, Nadeau P, Song W, et al. Presenilins are required for γ-secretase cleavage of βAPP and transmembrane cleavage of Notch-1. Nat Cell Biol 2000 ; 2 : 463–5. [Google Scholar]
  36. Li YM, Xu M, Lai MT, et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 2000 ; 405 : 689–94. [Google Scholar]
  37. Esler WP, Kimberly WT, Ostaszewski BL, et al. Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nat Cell Biol 2000 ; 2 : 428–34. [Google Scholar]
  38. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe, DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 1999 ; 398 : 513–7. [Google Scholar]
  39. Capell A, Steiner H, Romig H, et al. Presenilin-1 differentially facilitates endoproteolysis of the β-amyloid precursor protein and Notch. Nat Cell Biol 2000 ; 2 : 205–11. [Google Scholar]
  40. Kim SH, Leem JY, Lah JJ, et al. Multiple effects of aspartate mutant presenilin 1 on the processing and trafficking of amyloid precursor protein. J Biol Chem 2001 ; 276 : 43343–50. [Google Scholar]
  41. Kulic L, Walter J, Multhaup G, et al. Separation of presenilin function in amyloid β-peptide generation and endoproteolysis of Notch. Proc Natl Acad Sci USA 2000 ; 97 : 5913–8. [Google Scholar]
  42. Petit A, Bihel F, Alves da Costa C, Pourquié O, Kraus JL, Checler F. New protease inhibitors prevent γ-secretase-mediated Aβ40/42 production without affecting Notch cleavage. Nat Cell Biol 2001 ; 3 : 507–11. [Google Scholar]
  43. Armogida M, Petit A. Vincent B, Scarzello S, Alves da Costa C, Checler F. Endogenous β-amyloid production in presenilin-deficient embryonic mouse fibroblasts. Nat Cell Biol 2001 ; 3 : 1030–3. [Google Scholar]
  44. Wiltfang J, Esselmann H, Cupers P, et al. Elevation of β-amyloid peptide 2-42 in sporadic and familial Alzheimer’s disease and its generation in PS1 knockout cells. J Biol Chem 2001 ; 276 : 42645–57. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.