Accès gratuit
Numéro
Med Sci (Paris)
Volume 18, Numéro 6-7, Juin–Juillet 2002
Page(s) 717 - 724
Section M/S Revues : Articles de Synthèse
DOI https://doi.org/10.1051/medsci/20021867717
Publié en ligne 15 juin 2002
  1. Van Broeckhoven C. Presenilins and Alzheimer disease. Nat Genet 1995 ; 11 : 230–2.
  2. Checler F. Presenilins: multifunctional proteins involved in Alzheimer’s disease pathology. IUBMB Life 1999 ; 48 : 33–9.
  3. Checler F. Processing of the β-amyloid precursor protein and its regulation in Alzheimer’s disease. J Neurochem 1995 ; 65 : 1431–44.
  4. Burdick D, Soreghan B, Kwon M, et al. Assembly and aggregation properties of synthetic Alzheimer’s A4/β amyloid peptide analogs. J Biol Chem 1992 ; 267 : 546–54.
  5. Mattson MP. Cellular actions of β-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 1997 ; 77 : 1081–132.
  6. Octave JN. The amyloid peptide and its precursor in Alzheimer’s disease. Rev Neurosci 1995 ; 6 : 287–316.
  7. Marambaud P, Chevallier N, Ancolio K, Checler F. Post-transcriptional contribution of a cAMP-dependent pathway to the formation of α-and β/γ-secretases-derived products of βAPP maturation in human cells expressing wild type and Swedish mutated βAPP. Mol Med 1998 ; 4 : 715–23.
  8. Vincent B, Paitel E, Saftig P, et al. The disintegrins ADAM10 and TACE contribute to the constitutive and phorbolesters-regulated normal cleavage of the cellular prion protein.J Biol Chem 2001 ; 276 : 37743–6.
  9. Lammich S, Kojro E, Postina R, et al. Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 1999 ; 96 : 3922–7.
  10. Lopez-Perez E, Zhang Y, Franck SJ, Creemers J, Seidah N, Checler F. Constitutive α-secretase cleavage of the β-amyloid precursor protein in the furin-deficient LoVo cell line: involvement of the prohormone convertase 7 (PC7) and the disintegrin metalloprotease ADAM10. J Neurochem 2001 ; 76 : 1532–9.
  11. Buxbaum JD, Liu KN, Luo Y, ét al. Evidence that tumor necrosis factor α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 1998 ; 273 : 27765–7.
  12. Lopez-Perez E, Seidah N, Checler F. A proprotein convertase activity contributes to the processing of the Alzheimer’s β-amyloid precursor protein in human cells: evidence for a rôle of the prohormone convertase PC7 in the constitutive α-secretase pathway. J Neurochem 1999 ; 73 : 2056–62.
  13. Hartmann T, Bieger SC, Bruhl B, et al. Distinct sites of intracellular production for Alzheimer’s disease Aβ40/42 amyloid peptides. Nat Med 1997 ; 3 : 1016–20.
  14. Lichtenthaler SF, Wang R, Grimm H, Uljon SN, Masters CL, Beyreuther K. Mechanism of the cleavage specificity of Alzheimer’s disease γ-secretase identified by phenylalanine-scanning mutagenesis of the transmembrane domain of the amyloid precursor protein. Proc Natl Acad Sci USA 1999 ; 96 : 3053–8.
  15. Vassar R, Citron M. Aβ-generating enzymes: recent advances in γ- and γ-secretases research. Neuron 2000 ; 27 : 419–22.
  16. Cai H, Wang Y, Mc Carthy D, et al. BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat Neurosci 2001 ; 4 : 233–4.
  17. Luo Y, Bolon B, Kahn S, et al Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci 2001 ; 4 : 231–2.
  18. Saunders AJ, Kim TW, Tanzi RE. BACE maps to chromosome 11 and a BACE homolog, BACE2, reside in the obligate down syndrome region of chromosome 21. Science 1999 ; 286 : 1254–5.
  19. Checler F. Presenilins: structural aspects and post-translational events. Mol Neurobiol 1999 ; 19 : 255–65.
  20. Capell A, Grünberg J, Pesold B, et al. The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex. J Biol Chem 1998 ; 273 : 3205–11.
  21. Loetscher H, Deuschle U, Brockhaus M, et al. Presenilins are processed by caspase-like proteases. J Biol Chem 1997 ; 272 : 20655–9.
  22. Kim TW, Pettingell WH, Jung YK, Kovacs DM, Tanzi RE. Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science 1997 ; 277 : 373–6.
  23. Vito P, Lacana E, D’Adamio L. Interfering with apoptosis: Ca2+-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 1996 ; 271 : 521–5.
  24. Grünberg J, Walter J, Loetscher H, Deuschle U, Jacobsen H, Haass C. Alzheimer’s disease associated presenilin-1 holoprotein and its 18-20 kDa C-terminal fragment are death substrates for proteases of the caspase family. Biochemistry 1998 ; 37 : 2263–70.
  25. Van Gassen G, Annaert W, Van Broekhoven C. Binding partners of Alzheimer’s disease proteins: are they physiologically relevant? Neurobiol Dis 2000 ; 7 : 135–51.
  26. Selkoe DJ. Alzheimer’s disease: genes, proteins and therapy. Physiol Rev 2001 ; 81 : 741–66.
  27. Ancolio K, Marambaud P, Dauch P, Checler F. α-secretase-derived product of β-amyloid precursor protein is decreased by presenilin 1 mutations linked to familial Alzheimer’s disease. J Neurochem 1997 ; 69 : 2494–9.
  28. Marambaud P, Chevallier N, Barelli H, Wilk S, Checler F. Proteasome contributes to the α-secretase pathway of amyloid precursor protein in human cells. J Neurochem 1997; 68 : 698–703.
  29. Alves da Costa C, Ancolio K, Checler F. C-terminal maturation fragments of presenilin 1 and 2 control secretion of APPα and Aβ by human cells and are degraded by the proteasome. Mol Med 1999 ; 5 : 160–8.
  30. Marambaud P, Alves da Costa C, Ancolio K, Checler F. Alzheimer’s disease-linked mutation of presenilin 2 (N141I-PS2) drastically lowers APPα secretion: control by the proteasome. Biochem Biophys Res Commun 1998 ; 252 : 134–8.
  31. Kim TW, Pettingell WH, Hallmark OG, Moir RD, Wasco W, Tanzi, RE. Endoproteolytic cleavage and proteasomal degradation of presenilin 2 in transfected cells. J Biol Chem 1997 ; 272 : 11006–10.
  32. Checler F. The multiple paradoxes of presenilins. J Neurochem 2001 ; 76 : 1621–7.
  33. Wolfe MS. Presenilins and γ-secretase: structure meets function. J Neurochem 2001 ; 76 : 1615–20.
  34. Herreman A, Serneels L, Annaert W, Collen D, Schoonjans L, De Strooper B. Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol 2000 ; 2 : 461–2.
  35. Zhang Z, Nadeau P, Song W, et al. Presenilins are required for γ-secretase cleavage of βAPP and transmembrane cleavage of Notch-1. Nat Cell Biol 2000 ; 2 : 463–5.
  36. Li YM, Xu M, Lai MT, et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 2000 ; 405 : 689–94.
  37. Esler WP, Kimberly WT, Ostaszewski BL, et al. Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nat Cell Biol 2000 ; 2 : 428–34.
  38. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe, DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 1999 ; 398 : 513–7.
  39. Capell A, Steiner H, Romig H, et al. Presenilin-1 differentially facilitates endoproteolysis of the β-amyloid precursor protein and Notch. Nat Cell Biol 2000 ; 2 : 205–11.
  40. Kim SH, Leem JY, Lah JJ, et al. Multiple effects of aspartate mutant presenilin 1 on the processing and trafficking of amyloid precursor protein. J Biol Chem 2001 ; 276 : 43343–50.
  41. Kulic L, Walter J, Multhaup G, et al. Separation of presenilin function in amyloid β-peptide generation and endoproteolysis of Notch. Proc Natl Acad Sci USA 2000 ; 97 : 5913–8.
  42. Petit A, Bihel F, Alves da Costa C, Pourquié O, Kraus JL, Checler F. New protease inhibitors prevent γ-secretase-mediated Aβ40/42 production without affecting Notch cleavage. Nat Cell Biol 2001 ; 3 : 507–11.
  43. Armogida M, Petit A. Vincent B, Scarzello S, Alves da Costa C, Checler F. Endogenous β-amyloid production in presenilin-deficient embryonic mouse fibroblasts. Nat Cell Biol 2001 ; 3 : 1030–3.
  44. Wiltfang J, Esselmann H, Cupers P, et al. Elevation of β-amyloid peptide 2-42 in sporadic and familial Alzheimer’s disease and its generation in PS1 knockout cells. J Biol Chem 2001 ; 276 : 42645–57.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.