Free Access
Med Sci (Paris)
Volume 18, Number 6-7, Juin–Juillet 2002
Page(s) 727 - 736
Section M/S Revues : Articles de Synthèse
Published online 15 June 2002
  1. Alzheimer A. Über eine eigenartige erkrankung der hirnrinde. Allg Z Psychiat 1907; 64 : 146–8. [Google Scholar]
  2. Glenner GG, Wong CW. Alzheimer’s disease : initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120 : 885–90. [Google Scholar]
  3. Brion JP, Passareiro H, Nunez J, Flament-Durand J. Immunological determinants of tau proteins are present in neurofibrillary tangles of Alzheimer’s disease. Arch Biol (Brux) 1985; 95 : 229–35. [Google Scholar]
  4. Lee VMY, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Ann Rev Neurosci 2001; 24 : 1121–59. [Google Scholar]
  5. Delacourte A, Buée L. Tau pathology : a marker of neurodegenerative disorders. Curr Opin Neurol 2000; 13 : 371–6. [Google Scholar]
  6. Biernat J, Gustke N, Drewes G, Mandelkow EM, Mandelkow E. Phosphorylation of Ser262 strongly reduces binding of tau to microtubules. Neuron 1993; 11 : 153–63. [Google Scholar]
  7. Lovestone S, Reynolds CH. The phosphorylation of tau : a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 1997; 78 : 309–24. [Google Scholar]
  8. Trojanowski JQ, Lee VMY. Phosphorylation of paired helical filament tau in Alzheimer’s disease neurofibrillary lesions: focusing on phosphatases. FASEB J 1995; 9 : 1570–6. [Google Scholar]
  9. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein iso-forms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 2000; 33 : 95–130. [Google Scholar]
  10. Sergeant N, David J P, Goedert M, et al. Two-dimensional characterization of paired helical filament-tau from Alzheimer’s disease. J Neurochem 1997; 69 : 834–44. [Google Scholar]
  11. Buée-Scherrer V, Buée L, Leveugle B, et al. Pathological tau proteins in postencephalitic parkinsonism : comparison with Alzheimer’s disease and neurodegenerative disorders. Ann Neurol 1997; 42 : 356–9. [Google Scholar]
  12. Buée-Scherrer V, Buée L, Hof PR, et al. Neurofibrillary degenera-tion in amyotrophic lateral sclerosis/ parkinsonismdementia complex of Guam. Immunochemical characte-rization of tau proteins. Am J Pathol 1995; 146 : 924–32. [Google Scholar]
  13. Buée-Scherrer V, Hof PR, Buée L, et al. Hyperphosphorylated tau proteins differentiate corticobasal degeneration and Pick’s disease. Acta Neuropathol 1996; 91 : 351–9. [Google Scholar]
  14. Sergeant N, Wattez A, Delacourte A. Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusely « exon 10 » isoforms. J Neurochem 1999; 72 : 1243–9. [Google Scholar]
  15. Mailliot C, Sergeant N, Bussière T, Caillet-Boudin ML, Delacourte A, Buée L. Phosphorylation of specific sets of tau isoforms reflects different neurofibrillary degeneration processes. FEBS Lett 1998; 433 : 201–4. [Google Scholar]
  16. Delacourte A, Sergeant N, Wattez A, Gauvreau D, Robitaille Y. Vulnerable neuronal subsets in Alzheimer’s disease and Pick’s disease are distinguished by their tau iso-form distribution and phosphorylation. Ann Neurol 1998; 43 : 193–204. [Google Scholar]
  17. Sergeant N, David JP, Lefranc D, Vermersch P, Wattez A, Delacourte A. Different distribution of phosphorylated tau protein isoforms in Alzheimer’s and Pick’s diseases. FEBS Lett 1997; 412 : 578–82. [Google Scholar]
  18. Sergeant N, Sablonnière B, Schraen-Maschke S, et al. Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet 2001; 10 : 2143–55. [Google Scholar]
  19. Zhukareva V, Vogelsberg-Ragaglia V, Van Deerlim V, et al. Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann Neurol 2001; 49 : 165–75. [Google Scholar]
  20. Iseki E, Matsumura T, Marui W, et al. Familial frontotemporal dementia and parkinsonism with a novel mutation N296H mutation in exon 10 of the tau gene and a widespread tau accumulation in the glial cells. Acta Neuropathol 2001; 102 : 285–92. [Google Scholar]
  21. Neumann M, Schultz-Schaeffer W, Crowther RA, et al. Pick’s disease associated with the novel Tau gene mutation K369I. Ann Neurol 2001; 50 : 503–13. [Google Scholar]
  22. Pastor P, Pastor E, Carnero C, et al. Familial atypical progressive supranuclear palsy associated with homozigosity for the delN296 mutation in the tau gene. Ann Neurol 2001; 49 : 263–7. [Google Scholar]
  23. Delobel P, Flament S, Hamdane M, et al. Functional characterization of FTDP-17 tau gene mutations through their effects on Xenopus oocyte maturation. J Biol Chem 2002; 277 : 9199–205. [Google Scholar]
  24. Russ C, Powell JF, Zhao J, et al. The microtubule associated protein Tau gene and Alzheimer’s disease - an association study and meta-analysis. Neurosci Lett 2001; 314 : 92–6. [Google Scholar]
  25. Götz J, Probst A, Spillantini MG, et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J 1995; 14 : 1304–13. [Google Scholar]
  26. Brion JP, Tremp G, Octave JN. Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer’s disease. Am J Pathol 1999; 154 : 255–70. [Google Scholar]
  27. Götz J. Tau and transgenic animal models. Brain Res Rev 2001; 35 : 266–86. [Google Scholar]
  28. Lewis J, McGowan E, Rockwood J, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 2000; 25 : 402–5. [Google Scholar]
  29. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82 : 239–59. [Google Scholar]
  30. Fewster PH, Griffin-Brooks S, MacGregor J, Ojalvo-Rose E, Ball MJ. A topographical pathway by which histopathological lesions disseminate through the brain of patients with Alzheimer’s disease. Dementia 1991; 2 : 121–32. [Google Scholar]
  31. Duyckaerts C, Colle MA, Dessi F, Grignon Y, Piette F, Hauw JJ. The progression of the lesions in Alzheimer disease: insights from a prospective clinicopathological study. J Neural Transm 1998; 53 (suppl) : 119–26. [Google Scholar]
  32. Delacourte A, Buée L, David JP, et al. Lack of continuum between cerebral aging and Alzheimer’s disease as revealed by PHF-tau and Aβ biochemistry. Alzh Rep 1998; 1 : 101–10. [Google Scholar]
  33. Delacourte A, David JP, Sergeant N, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 1999; 52 : 1158–65. [Google Scholar]
  34. Delacourte A. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 2000; 54 : 538. [Google Scholar]
  35. Delacourte A, Sergeant N, Champain D, et al. The biochemical spreading of Tau and amyloid β precursor protein pathologies in aging and sporadic Alzheimer’s disease. Brain Aging 2001; 1 : 33–42. [Google Scholar]
  36. Lewis J, Dickson DW, Lin WL, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 2001; 293 : 1487–91. [Google Scholar]
  37. Götz J, Chen F, Van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 2001; 293 : 1491–5. [Google Scholar]
  38. Sergeant N, David JP, Champain D, et al. Progressive decrease of amyloid precursor protein carboxy-terminal fragments (APP-CTFs), associated with tau pathology stages, in Alzheimer’s disease. J Neurochem 2002; 81 : 663–72. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.