Accès gratuit
Numéro
Med Sci (Paris)
Volume 25, Numéro 2, Février 2009
Page(s) 175 - 180
Section M/S revues
DOI https://doi.org/10.1051/medsci/2009252175
Publié en ligne 15 février 2009
  1. Johnson JM, Castle J, Garrett-Engele P, et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 2003; 302 : 2141–4. [Google Scholar]
  2. Lipscombe D. Neuronal proteins custom designed by alternative splicing. Curr Opin Neurobiol 2005; 15 : 358–63. [Google Scholar]
  3. Faustino NA, Cooper TA. Pre-mRNA splicing and human disease. Genes Dev 2003; 17 : 419–37. [Google Scholar]
  4. Karni R, de Stanchina E, Lowe SW, et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 2007; 14 : 185–93. [Google Scholar]
  5. Ghigna C, Giordano S, Shen H, et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 2005; 20 : 881–90. [Google Scholar]
  6. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003; 72 : 291–336. [Google Scholar]
  7. Martinez-Contreras R, Cloutier P, Shkreta L, et al. hnRNP proteins and splicing control. Adv Exp Med Biol 2007; 623 : 123–47. [Google Scholar]
  8. Martinez-Contreras R, Fisette JF, Nasim FU, et al. Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol 2006; 4 : e21. [Google Scholar]
  9. Ule J, Stefani G, Mele, et al. An RNA map predicting Nova-dependent splicing regulation. Nature 2006; 444 : 580–6. [Google Scholar]
  10. McGrail JC, Tatum EM, O’Keefe RT. Mutation in the U2 snRNA influences exon interactions of U5 snRNA loop 1 during pre-mRNA splicing. EMBO J 2006; 25 : 3813–22. [Google Scholar]
  11. Simard MJ, Chabot B. SRp30c is a repressor of 3’ splice site utilization. Mol Cell Biol 2002; 22 : 4001–10. [Google Scholar]
  12. Kanopka A, Muhlemann O, Akusjarvi G. Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 1996; 381 : 535–8. [Google Scholar]
  13. Domsic JK, Wang Y, Mayeda A, et al. Human immunodeficiency virus type 1 hnRNP A/B-dependent exonic splicing silencer ESSV antagonizes binding of U2AF65 to viral polypyrimidine tracts. Mol Cell Biol 2003 23 : 8762–72. [Google Scholar]
  14. Izquierdo JM, Majós N, Bonnal S, et al. Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell 2005; 19 : 475–84. [Google Scholar]
  15. Sharma S, Kohlstaedt LA, Damianov A, et al. Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome. Nat Struct Mol Biol 2008; 15 : 183–91. [Google Scholar]
  16. Blencowe BJ. Alternative splicing : new insights from global analyses. Cell 2006; 126 : 37–47. [Google Scholar]
  17. Boutz PL, Stoilov P, Li Q, et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 2007; 21 : 1636–52. [Google Scholar]
  18. Markovtsov V, Nikolic JM, Goldman JA, et al. Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol 2000; 20 : 7463–79. [Google Scholar]
  19. Kamma H, Portman DS, Dreyfuss G. Cell type-specific expression of hnRNP proteins. Exp Cell Res 1995; 221 : 187–96. [Google Scholar]
  20. Venables JP, Koh CS, Froehlich U, et al. Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol Cell Biol 2008; 28 : 6033–43. [Google Scholar]
  21. Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 2007; 27 : 435–48. [Google Scholar]
  22. Boutz PL, Chawla G, Stoilov P, Black DL, et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev 2007; 21 : 71–84. [Google Scholar]
  23. Romano M, Marcucci R, Buratti E, et al. Regulation of 3’ splice site selection in the 844ins68 polymorphism of the cystathionine Beta -synthase gene. J Biol Chem 2002; 277 : 43821–9. [Google Scholar]
  24. Chou MY, Rooke N, Turck CW, Black DL. hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol Cell Biol 1999; 19 : 69–77. [Google Scholar]
  25. Garneau D, Revil T, Fisette JF, Chabot B. Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem 2005; 280 : 22641–50. [Google Scholar]
  26. Zhou HL, Baraniak AP, Lou H. Role for Fox-1/Fox-2 in mediating the neuronal pathway of calcitonin/calcitonin gene-related peptide alternative RNA processing. Mol Cell Biol 2007; 27 : 830–41. [Google Scholar]
  27. Ponthier JL, Schluepen C, Chen W, et al. Fox-2 splicing factor binds to a conserved intron motif to promote inclusion of protein 4.1R alternative exon 16. J Biol Chem 2006; 281 : 12468–74. [Google Scholar]
  28. Zhang W, Liu H, Han K, Grabowski PJ. Region-specific alternative splicing in the nervous system : implications for regulation by the RNA-binding protein NAPOR. RNA 2002; 8 : 671–85. [Google Scholar]
  29. de la Mata M, Kornblihtt AR. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat Struct Mol Biol 2006; 13 : 973–80. [Google Scholar]
  30. Millhouse S, Manley JL. The C-terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein. Mol Cell Biol 2005; 25 : 533–44. [Google Scholar]
  31. Egloff S, Murphy S. Cracking the RNA polymerase II CTD code. Trends Genet 2008; 24 : 280–8. [Google Scholar]
  32. De la Mata M, Alonso CR, Kadener S, et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 2003; 12 : 525–32. [Google Scholar]
  33. Roberts GC, Gooding C, Mak HY, et al. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res 1998; 26 : 5568–72. [Google Scholar]
  34. Batsche E, Yaniv M, Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 2006; 13 : 22–9. [Google Scholar]
  35. Kundu S, Horn PJ, Peterson CL. SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev 2007; 21 : 997–1004. [Google Scholar]
  36. Blaustein M, Pelisch F, Srebrow A. Signals, pathways and splicing regulation. Int J Biochem Cell Biol 2007; 39 : 2031–48. [Google Scholar]
  37. Matter N, Herrlich P, Konig H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 2002; 420 : 691–5. [Google Scholar]
  38. Boise LH, González-García M, Postema CE, et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74 : 597–608. [Google Scholar]
  39. Cloutier P, Toutant J, Shkreta L, et al. Antagonistic effects of the SRp30c protein and cryptic 5’ splice sites on the alternative splicing of the apoptotic regulator Bcl-x. J Biol Chem 2008; 283 : 21315–24. [Google Scholar]
  40. Paronetto MP, Achsel T, Massiello A, et al. The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol 2007; 176 : 929–39. [Google Scholar]
  41. Massiello A, Roesser JR, Chalfant CE. SAP155 Binds to ceramide-responsive RNA cis-element 1 and regulates the alternative 5’ splice site selection of Bcl-x pre-mRNA. Faseb J 2006; 20 : 1680–2. [Google Scholar]
  42. Li CY, Chu JY, Yu JK, et al. Regulation of alternative splicing of Bcl-x by IL-6, GM-CSF and TPA. Cell Res 2004; 14 : 473–9. [Google Scholar]
  43. Revil T, Toutant J, Shkreta L, et al. Protein kinase C-dependent control of Bcl-x alternative splicing. Mol Cell Biol 2007; 27 : 8431–41. [Google Scholar]
  44. Klinck R, Bramard A, Inkel L, et al. Multiple alternative splicing markers for ovarian cancer. Cancer Res 2008; 68 : 657–63. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.