Free Access
Issue
Med Sci (Paris)
Volume 25, Number 2, Février 2009
Page(s) 175 - 180
Section M/S revues
DOI https://doi.org/10.1051/medsci/2009252175
Published online 15 February 2009
  1. Johnson JM, Castle J, Garrett-Engele P, et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 2003; 302 : 2141–4. [Google Scholar]
  2. Lipscombe D. Neuronal proteins custom designed by alternative splicing. Curr Opin Neurobiol 2005; 15 : 358–63. [Google Scholar]
  3. Faustino NA, Cooper TA. Pre-mRNA splicing and human disease. Genes Dev 2003; 17 : 419–37. [Google Scholar]
  4. Karni R, de Stanchina E, Lowe SW, et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 2007; 14 : 185–93. [Google Scholar]
  5. Ghigna C, Giordano S, Shen H, et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 2005; 20 : 881–90. [Google Scholar]
  6. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003; 72 : 291–336. [Google Scholar]
  7. Martinez-Contreras R, Cloutier P, Shkreta L, et al. hnRNP proteins and splicing control. Adv Exp Med Biol 2007; 623 : 123–47. [Google Scholar]
  8. Martinez-Contreras R, Fisette JF, Nasim FU, et al. Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol 2006; 4 : e21. [Google Scholar]
  9. Ule J, Stefani G, Mele, et al. An RNA map predicting Nova-dependent splicing regulation. Nature 2006; 444 : 580–6. [Google Scholar]
  10. McGrail JC, Tatum EM, O’Keefe RT. Mutation in the U2 snRNA influences exon interactions of U5 snRNA loop 1 during pre-mRNA splicing. EMBO J 2006; 25 : 3813–22. [Google Scholar]
  11. Simard MJ, Chabot B. SRp30c is a repressor of 3’ splice site utilization. Mol Cell Biol 2002; 22 : 4001–10. [Google Scholar]
  12. Kanopka A, Muhlemann O, Akusjarvi G. Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 1996; 381 : 535–8. [Google Scholar]
  13. Domsic JK, Wang Y, Mayeda A, et al. Human immunodeficiency virus type 1 hnRNP A/B-dependent exonic splicing silencer ESSV antagonizes binding of U2AF65 to viral polypyrimidine tracts. Mol Cell Biol 2003 23 : 8762–72. [Google Scholar]
  14. Izquierdo JM, Majós N, Bonnal S, et al. Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell 2005; 19 : 475–84. [Google Scholar]
  15. Sharma S, Kohlstaedt LA, Damianov A, et al. Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome. Nat Struct Mol Biol 2008; 15 : 183–91. [Google Scholar]
  16. Blencowe BJ. Alternative splicing : new insights from global analyses. Cell 2006; 126 : 37–47. [Google Scholar]
  17. Boutz PL, Stoilov P, Li Q, et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 2007; 21 : 1636–52. [Google Scholar]
  18. Markovtsov V, Nikolic JM, Goldman JA, et al. Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol 2000; 20 : 7463–79. [Google Scholar]
  19. Kamma H, Portman DS, Dreyfuss G. Cell type-specific expression of hnRNP proteins. Exp Cell Res 1995; 221 : 187–96. [Google Scholar]
  20. Venables JP, Koh CS, Froehlich U, et al. Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol Cell Biol 2008; 28 : 6033–43. [Google Scholar]
  21. Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 2007; 27 : 435–48. [Google Scholar]
  22. Boutz PL, Chawla G, Stoilov P, Black DL, et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev 2007; 21 : 71–84. [Google Scholar]
  23. Romano M, Marcucci R, Buratti E, et al. Regulation of 3’ splice site selection in the 844ins68 polymorphism of the cystathionine Beta -synthase gene. J Biol Chem 2002; 277 : 43821–9. [Google Scholar]
  24. Chou MY, Rooke N, Turck CW, Black DL. hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol Cell Biol 1999; 19 : 69–77. [Google Scholar]
  25. Garneau D, Revil T, Fisette JF, Chabot B. Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem 2005; 280 : 22641–50. [Google Scholar]
  26. Zhou HL, Baraniak AP, Lou H. Role for Fox-1/Fox-2 in mediating the neuronal pathway of calcitonin/calcitonin gene-related peptide alternative RNA processing. Mol Cell Biol 2007; 27 : 830–41. [Google Scholar]
  27. Ponthier JL, Schluepen C, Chen W, et al. Fox-2 splicing factor binds to a conserved intron motif to promote inclusion of protein 4.1R alternative exon 16. J Biol Chem 2006; 281 : 12468–74. [Google Scholar]
  28. Zhang W, Liu H, Han K, Grabowski PJ. Region-specific alternative splicing in the nervous system : implications for regulation by the RNA-binding protein NAPOR. RNA 2002; 8 : 671–85. [Google Scholar]
  29. de la Mata M, Kornblihtt AR. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat Struct Mol Biol 2006; 13 : 973–80. [Google Scholar]
  30. Millhouse S, Manley JL. The C-terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein. Mol Cell Biol 2005; 25 : 533–44. [Google Scholar]
  31. Egloff S, Murphy S. Cracking the RNA polymerase II CTD code. Trends Genet 2008; 24 : 280–8. [Google Scholar]
  32. De la Mata M, Alonso CR, Kadener S, et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 2003; 12 : 525–32. [Google Scholar]
  33. Roberts GC, Gooding C, Mak HY, et al. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res 1998; 26 : 5568–72. [Google Scholar]
  34. Batsche E, Yaniv M, Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 2006; 13 : 22–9. [Google Scholar]
  35. Kundu S, Horn PJ, Peterson CL. SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev 2007; 21 : 997–1004. [Google Scholar]
  36. Blaustein M, Pelisch F, Srebrow A. Signals, pathways and splicing regulation. Int J Biochem Cell Biol 2007; 39 : 2031–48. [Google Scholar]
  37. Matter N, Herrlich P, Konig H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 2002; 420 : 691–5. [Google Scholar]
  38. Boise LH, González-García M, Postema CE, et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74 : 597–608. [Google Scholar]
  39. Cloutier P, Toutant J, Shkreta L, et al. Antagonistic effects of the SRp30c protein and cryptic 5’ splice sites on the alternative splicing of the apoptotic regulator Bcl-x. J Biol Chem 2008; 283 : 21315–24. [Google Scholar]
  40. Paronetto MP, Achsel T, Massiello A, et al. The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol 2007; 176 : 929–39. [Google Scholar]
  41. Massiello A, Roesser JR, Chalfant CE. SAP155 Binds to ceramide-responsive RNA cis-element 1 and regulates the alternative 5’ splice site selection of Bcl-x pre-mRNA. Faseb J 2006; 20 : 1680–2. [Google Scholar]
  42. Li CY, Chu JY, Yu JK, et al. Regulation of alternative splicing of Bcl-x by IL-6, GM-CSF and TPA. Cell Res 2004; 14 : 473–9. [Google Scholar]
  43. Revil T, Toutant J, Shkreta L, et al. Protein kinase C-dependent control of Bcl-x alternative splicing. Mol Cell Biol 2007; 27 : 8431–41. [Google Scholar]
  44. Klinck R, Bramard A, Inkel L, et al. Multiple alternative splicing markers for ovarian cancer. Cancer Res 2008; 68 : 657–63. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.