Free Access
Med Sci (Paris)
Volume 25, Number 2, Février 2009
Page(s) 168 - 174
Section M/S revues
Published online 15 February 2009
  1. Linder S, Aepfelbacher M. Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 2003; 13 : 376–85. [Google Scholar]
  2. Linder S. The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 2007; 3 : 107–17. [Google Scholar]
  3. Buccione R, Orth JD, McNiven MA. Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 2004; 5 : 647–57. [Google Scholar]
  4. David-Pfeuty T, Singer SJ. Altered distributions of the cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc Natl Acad Sci USA 1980; 77 : 6687–91. [Google Scholar]
  5. Mueller SC, Chen WT. Cellular invasion into matrix beads: localization of beta 1 integrins and fibronectin to the invadopodia. J Cell Sci 1991; 99 : 213–25. [Google Scholar]
  6. Chabadel A, Banon-Rodriguez I, Cluet D, et al. CD44 and beta3 integrin organize two functionally distinct actin-based domains in osteoclasts. Mol Biol Cell 2007; 18 : 4899–910. [Google Scholar]
  7. Baldassarre M, Ayala I, Beznoussenko G, et al. Actin dynamics at sites of extracellular matrix degradation. Eur J Cell Biol 2006; 85 : 1217–31. [Google Scholar]
  8. Burns S, Hardy SJ, Buddle J, et al. Maturation of DC is associated with changes in motile characteristics and adherence. Cell Motil Cytoskeleton 2004; 57 : 118–32. [Google Scholar]
  9. Sabri S, Foudi A, Boukour S, et al. Deficiency in the Wiskott-Aldrich protein induces premature proplatelet formation and platelet production in the bone marrow compartment. Blood 2006; 108 : 134–40. [Google Scholar]
  10. Fan L, Di Ciano-Oliveira C, Weed SA, et al. Actin depolymerization-induced tyrosine phosphorylation of cortactin: the role of Fer kinase. Biochem J 2004; 380 : 581–91. [Google Scholar]
  11. Gunst SJ. Actions by actin: reciprocal regulation of cortactin activity by tyrosine kinases and F-actin. Biochem J 2004; 380 : e7–8. [Google Scholar]
  12. Webb BA, Eves R, Mak AS. Cortactin regulates podosome formation: roles of the protein interaction domains. Exp Cell Res 2006; 312 : 760–69. [Google Scholar]
  13. Burgstaller G, Gimona M. Actin cytoskeleton remodelling via local inhibition of contractility at discrete microdomains. J Cell Sci 2004; 117 : 223–31. [Google Scholar]
  14. Luxenburg C, Geblinger D, Klein E, et al. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLoS One 2007; 2 : e179. [Google Scholar]
  15. Ayala I, Baldassarre M, Giacchetti G, et al. Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. J Cell Sci 2008; 121 : 369–78. [Google Scholar]
  16. Nakahara H, Mueller SC, Nomizu M, et al. Activation of beta1 integrin signaling stimulates tyrosine phosphorylation of p190RhoGAP and membrane-protrusive activities at invadopodia. J Biol Chem 1998; 273 : 9–12. [Google Scholar]
  17. Mueller SC, Ghersi G, Akiyama SK, et al. A novel protease-docking function of integrin at invadopodia. J Biol Chem 1999; 274 : 24947–52. [Google Scholar]
  18. Bowden ET, Barth M, Thomas D, et al. An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 1999; 18 : 4440–9. [Google Scholar]
  19. Gimona M, Buccione R, Courtneidge SA, Linder S. Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 2008; 20 : 235–41. [Google Scholar]
  20. Hai CM, Hahne P, Harrington EO, Gimona M. Conventional protein kinase C mediates phorbol-dibutyrate-induced cytoskeletal remodeling in A7r5 smooth muscle cells. Exp Cell Res 2002; 280 : 64–74. [Google Scholar]
  21. Tatin F, Varon C, Génot E, Moreau V. A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester. J Cell Sci 2006; 119 : 769–81. [Google Scholar]
  22. Chellaiah MA, Biswas RS, Yuen D, et al. Phosphatidylinositol 3,4, 5-trisphosphate directs association of Src homology 2-containing signaling proteins with gelsolin. J Biol Chem 2001; 276 : 47434–44. [Google Scholar]
  23. Guegan, F, Tatin F, Leste-Lasserre T, et al. p190B RhoGAP regulates endothelial-cell-associated proteolysis through MT1-MMP and MMP2. J Cell Sci 2008; 121 : 2054–61. [Google Scholar]
  24. Moreau V, Tatin F, Varon C, Génot E. Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA. Mol Cell Biol 2003; 23 : 6809–22. [Google Scholar]
  25. Moreau V, Tatin F, Varon C, et al. Cdc42-driven podosome formation in endothelial cells. Eur J Cell Biol 2006; 85 : 319–25. [Google Scholar]
  26. Billottet C, Rottiers P, Tatin F, et al. Regulatory signals for endothelial podosome formation. Eur J Cell Biol 2008; 87 : 543–54 [Google Scholar]
  27. Varon C, Tatin F, Moreau V, et al. Transforming growth factor beta induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol 2006; 26 : 3582–94. [Google Scholar]
  28. Osiak AE, Zenner G, Linder S. Subconfluent endothelial cells form podosomes downstream of cytokine and RhoGTPase signaling. Exp Cell Res 2005; 307 : 342–53. [Google Scholar]
  29. Tarone G, Cirillo D, Giancotti FG, et al. Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp Cell Res 1985; 159 : 141–57. [Google Scholar]
  30. Baron R. L’ostéoclaste et les mécanismes moléculaires de la résorption osseuse. Med Sci (Paris) 2001; 17 : 1260–69. [Google Scholar]
  31. van Helden SF, Krooshoop DJ, Broers KC, Raymakers RA, et al. A critical role for prostaglandin E2 in podosome dissolution and induction of high-speed migration during dendritic cell maturation. J Immunol 2006; 177 : 1567–74. [Google Scholar]
  32. Nobile C, Lind M, Miro F, et al. Cognate CD4+ T-cell-dendritic cell interactions induce migration of immature dendritic cells through dissolution of their podosomes. Blood 2008; 111 : 3579–90. [Google Scholar]
  33. Cougoule C, Carreno S, Castandet J, et al. Activation of the lysosome-associated p61Hck isoform triggers the biogenesis of podosomes. Traffic 2005; 8 : 682–94. [Google Scholar]
  34. Lorenz M, Yamaguchi H, Wang Y, et al. Imaging sites of N-WASp activity in lamellipodia and invadopodia of carcinoma cells. Curr Biol 2004; 14 : 697–703. [Google Scholar]
  35. Saltel F, Destaing O, Bard F, et al. Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell 2004; 15 : 5231–41. [Google Scholar]
  36. Destaing O, Sanjay A, Itzstein C, et al. The Tyrosine Kinase Activity of c-Src regulates actin Dynamics and organization of podosomes in osteoclasts. Mol Biol Cell 2008; 19 : 394–404. [Google Scholar]
  37. VanWinkle WB, Snuggs M, Buja LM. Hypoxia-induced alterations in cytoskeleton coincide with collagenase expression in cultured neonatal rat cardiomyocytes. J Mol Cell Cardiol 1995; 27 : 2531–42. [Google Scholar]
  38. Vesely P, Blase C, Matouskova E, Bereiter-Hahn J. Arising podosomal structures are associated with neoplastic cell morphological phenotype induced by the microenvironment. Anticancer Res 2006; 26 : 967–72. [Google Scholar]
  39. Suchting S, Freitas C, Eichmann A. L’angiogenèse passe sous contrôle du couple Delta-Notch. Med Sci (Paris) 2007; 23 : 347–8. [Google Scholar]
  40. Lehoux S, Tedgui A. Bases cellulaires de la mécanotransduction dans la cellule endothéliale. Med Sci (Paris) 2004; 20 : 551–6. [Google Scholar]
  41. Primeau M, Lamarche-Vane N. Coup d’œil sur les petites GTPases Rho. Med Sci (Paris) 2008; 24 : 157–62. [Google Scholar]
  42. Cornillon J, Campos L, Guyotat D. Focal adhesion kinase (FAK), une protéine aux fonctions multiples. Med Sci (Paris) 2003; 19 : 743–52. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.