Free Access
Med Sci (Paris)
Volume 25, Number 2, Février 2009
Page(s) 181 - 191
Section M/S revues
Published online 15 February 2009
  1. Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 2008; 9 : 125–38. [Google Scholar]
  2. Alpy F, Tomasetto C. Give lipids a START: the StAR-related lipid transfer (START) domain in mammals. J Cell Sci 2005; 118 : 2791–801. [Google Scholar]
  3. Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 1994; 269 : 28314–22. [Google Scholar]
  4. Watari H, Arakane F, Moog-Lutz C, et al. MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc Natl Acad Sci USA 1997; 94 : 8462–7. [Google Scholar]
  5. Moog-Lutz C, Tomasetto C, Regnier CH, et al. MLN64 exhibits homology with the steroidogenic acute regulatory protein (STAR) and is over-expressed in human breast carcinomas. Int J Cancer 1997; 71 : 183–91. [Google Scholar]
  6. Soccio RE, Breslow JL. StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J Biol Chem 2003; 278 : 22183–6. [Google Scholar]
  7. Alpy F, Latchumanan VK, Kedinger V, et al. Functional characterization of the Mental domain. J Biol Chem 2005; 280 : 17945–52. [Google Scholar]
  8. Lin D, Sugawara T, Strauss JF 3rd, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 1995; 267 : 1828–31. [Google Scholar]
  9. Bose HS, Whittal RM, Ran Y, et al. StAR-like activity and molten globule behavior of StARD6, a male germ-line protein. Biochemistry 2008; 47 : 2277–88. [Google Scholar]
  10. Alpy F, Stoeckel ME, Dierich A, et al. The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J Biol Chem 2001; 276 : 4261–9. [Google Scholar]
  11. Soccio RE, Adams RM, Romanowski MJ, et al. The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6. Proc Natl Acad Sci USA 2002; 99 : 6943–8. [Google Scholar]
  12. Gomes C, Oh SD, Kim JW, et al. Expression of the putative sterol binding protein Stard6 gene is male germ cell specific. Biol Reprod 2005; 72 : 651–8. [Google Scholar]
  13. Munro S. Cell biology: earthworms and lipid couriers. Nature 2003; 426 : 775–6. [Google Scholar]
  14. Olayioye MA, Vehring S, Muller P, et al. StarD10, a START domain protein overexpressed in breast cancer, functions as a phospholipid transfer protein. J Biol Chem 2005; 280 : 27436–42. [Google Scholar]
  15. Wirtz KW. Phospholipid transfer proteins. Annu Rev Biochem 1991; 60 : 73–99. [Google Scholar]
  16. Hanada K, Kumagai K, Yasuda S, et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 2003; 426 : 803–9. [Google Scholar]
  17. Baez JM, Tabas I, Cohen DE. Decreased lipid efflux and increased susceptibility to cholesterol-induced apoptosis in macrophages lacking phosphatidylcholine transfer protein. Biochem J 2005; 388 : 57–63. [Google Scholar]
  18. Baez JM, Barbour SE, Cohen DE. Phosphatidylcholine transfer protein promotes apolipoprotein A-I-mediated lipid efflux in Chinese hamster ovary cells. J Biol Chem 2002; 277 : 6198–206. [Google Scholar]
  19. Angeletti S, Rena V, Nores R, et al. Expression and localization of StarD7 in trophoblast cells. Placenta 2008; 29 : 396–404. [Google Scholar]
  20. Van Helvoort A, de Brouwer A, Ottenhoff R, et al. Mice without phosphatidylcholine transfer protein have no defects in the secretion of phosphatidylcholine into bile or into lung airspaces. Proc Natl Acad Sci USA 1999; 96 : 11501–6. [Google Scholar]
  21. Wu MK, Hyogo H, Yadav SK, et al. Impaired response of biliary lipid secretion to a lithogenic diet in phosphatidylcholine transfer protein-deficient mice. J Lipid Res 2005; 46 : 422–31. [Google Scholar]
  22. Kumagai K, Yasuda S, Okemoto K, et al. CERT mediates intermembrane transfer of various molecular species of ceramides. J Biol Chem 2005; 280 : 6488–95. [Google Scholar]
  23. Primeau M, Lamarche-Vane N. Coup d’œil sur les petites GTPases Rho. Med Sci (Paris) 2008; 24 : 157–62. [Google Scholar]
  24. Durkin ME, Avner MR, Huh CG, et al. DLC-1, a Rho GTPase-activating protein with tumor suppressor function, is essential for embryonic development. FEBS Lett 2005; 579 : 1191–6. [Google Scholar]
  25. Schrick K, Nguyen D, Karlowski WM, Mayer KF. Start lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors. Genome Biol 2004; 5 : R41. [Google Scholar]
  26. Kudo N, Kumagai K, Tomishige N, et al. Structural basis for specific lipid recognition by Cert responsible for nonvesicular trafficking of ceramide. Proc Natl Acad Sci USA 2008; 105 : 488–93. [Google Scholar]
  27. Stocco DM, Wang X, Jo Y, Manna PR. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol 2005; 19 : 2647–59. [Google Scholar]
  28. Chang IY, Kim JH, Hwang G, et al. Immunohistochemical detection of StarD6 in the rat nervous system. Neuroreport 2007; 18 : 1615–9. [Google Scholar]
  29. Alpy F, Boulay A, Moog-Lutz C, et al. Metastatic lymph node 64 (MLN64), a gene overexpressed in breast cancers, is regulated by Sp/KLF transcription factors. Oncogene 2003; 22 : 3770–80. [Google Scholar]
  30. Qian X, Li G, Asmussen HK, et al. Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proc Natl Acad Sci USA 2007; 104 : 9012–7. [Google Scholar]
  31. Yamaga M, Sekimata M, Fujii M, et al. A PLCdelta1-binding protein, p122/RhoGAP, is localized in caveolin-enriched membrane domains and regulates caveolin internalization. Genes Cells 2004; 9 : 25–37. [Google Scholar]
  32. Rodriguez-Agudo D, Ren S, Hylemon PB, et al. Localization of StarD5 cholesterol binding protein. J Lipid Res 2006; 47 : 1168–75. [Google Scholar]
  33. Fugmann T, Hausser A, Schoffler P, et al. Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein. J Cell Biol 2007; 178 : 15–22. [Google Scholar]
  34. Saito S, Matsui H, Kawano M, et al. Protein phosphatase 2C (epsilon) is an endoplasmic reticulum integral membrane protein that dephosphorylates the ceramide transport protein CERT to enhance its association with organelle membranes. J Biol Chem 2008; 283 : 6584–93. [Google Scholar]
  35. Bose H, Lingappa VR, Miller WL. Rapid regulation of steroidogenesis by mitochondrial protein import. Nature 2002; 417 : 87–91. [Google Scholar]
  36. Baker BY, Yaworsky DC, Miller WL. A pH-dependent molten globule transition is required for activity of the steroidogenic acute regulatory protein, StAR. J Biol Chem 2005; 280 : 41753–60. [Google Scholar]
  37. Stocco DM. Clinical disorders associated with abnormal cholesterol transport: mutations in the steroidogenic acute regulatory protein. Mol Cell Endocrinol 2002; 191 : 19–25. [Google Scholar]
  38. Olayioye MA, Hoffmann P, Pomorski T, et al. The phosphoprotein StarD10 is overexpressed in breast cancer and cooperates with ErbB receptors in cellular transformation. Cancer Res 2004; 64 : 3538–44. [Google Scholar]
  39. Kawai K, Kiyota M, Seike J, et al. START-GAP3/DLC3 is a GAP for RhoA and Cdc42 and is localized in focal adhesions regulating cell morphology. Biochem Biophys Res Commun 2007; 364 : 783–9. [Google Scholar]
  40. Wong CM, Lee JM, Ching YP, et al. Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma. Cancer Res 2003; 63 : 7646–51. [Google Scholar]
  41. Yuan BZ, Zhou X, Durkin ME, et al. DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. Oncogene 2003; 22 : 445–50. [Google Scholar]
  42. Plaumann M, Seitz S, Frege R, et al. Analysis of DLC-1 expression in human breast cancer. J Cancer Res Clin Oncol 2003; 129 : 349–54. [Google Scholar]
  43. Ching YP, Wong CM, Chan SF, et al. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. J Biol Chem 2003; 278 : 10824–30. [Google Scholar]
  44. Ng IO, Liang ZD, Cao L, Lee TK. DLC-1 is deleted in primary hepatocellular carcinoma and exerts inhibitory effects on the proliferation of hepatoma cell lines with deleted DLC-1. Cancer Res 2000; 60 : 6581–4. [Google Scholar]
  45. Yuan BZ, Jefferson AM, Baldwin KT, et al. DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas. Oncogene 2004; 23 : 1405–11. [Google Scholar]
  46. Zhou X, Thorgeirsson SS, Popescu NC. Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene 2004; 23 : 1308–13. [Google Scholar]
  47. Raya A, Revert F, Navarro S, Saus J. Characterization of a novel type of serine/threonine kinase that specifically phosphorylates the human goodpasture antigen. J Biol Chem 1999; 274 : 12642–9. [Google Scholar]
  48. Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG. Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N Engl J Med 2003; 348 : 2543–56. [Google Scholar]
  49. Revert F, Merino R, Monteagudo C, et al. Increased Goodpasture antigen-binding protein expression induces type IV collagen disorganization and deposit of immunoglobulin A in glomerular basement membrane. Am J Pathol 2007; 171 : 1419–30. [Google Scholar]
  50. Swanton C, Marani M, Pardo O, et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 2007; 11 : 498–512. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.