Accès gratuit
Numéro
Med Sci (Paris)
Volume 18, Numéro 5, Mai 2002
Page(s) 577 - 584
Section Le Magazine : Articles de Synthèse
DOI https://doi.org/10.1051/medsci/2002185577
Publié en ligne 15 mai 2002
  1. May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 1999; 18 : 7621–36. [Google Scholar]
  2. Venot C, Maratrat M, Dureuil C, et al. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J 1998; 17 : 4668–79. [Google Scholar]
  3. Gottifredi V, Prives C. Molecular biology: getting p53 out of the nucleus. Science 2001; 292 : 1851–52. [Google Scholar]
  4. North S, Hainaut P. p53 and cell-cycle control: a finger in every pie. Pathol Biol 2000; 48 : 255–70. [Google Scholar]
  5. Hermeking H, Lengauer C, Polyak K, et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1997; 1 : 3–11. [Google Scholar]
  6. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996; 10 : 1054–72. [Google Scholar]
  7. Drane P, Bravard A, Bouvard V, May E. Reciprocal downregulation of p53 and SOD2 gene expression: implication in p53 mediated apoptosis. Oncogene 2001; 20 : 430–9. [Google Scholar]
  8. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408 : 307–10. [Google Scholar]
  9. Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 2001; 268 : 2764–72. [Google Scholar]
  10. Caspari T. How to activate p53. Curr Biol 2000; 10 : R315–7. [Google Scholar]
  11. Buschmann T, Potapova O, Bar-Shira A, et al. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 2001; 21 : 2743–54. [Google Scholar]
  12. Bulavin DV, Saito S, Hollander MC, et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 1999;18 : 6845–54. [Google Scholar]
  13. Dumaz N, Meek DW. Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J 1999; 18 : 7002–10. [Google Scholar]
  14. Jabbur JR, Huang P, Zhang W. DNA damage-induced phosphorylation of p53 at serine 20 correlates with p21 and Mdm-2 induction in vivo. Oncogene 2000; 19 3–8. [Google Scholar]
  15. Dornan D, Hupp TR. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300. EMBO Rep 2001; 2 : 139–44. [Google Scholar]
  16. Zhang YP, Xiong Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 2001; 292 : 1910–5. [Google Scholar]
  17. Oda K, Arakawa H, Tanaka T, et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 2000; 102 : 849–62. [Google Scholar]
  18. Bean LJH, Stark GR. Phosphorylation of serines 15 and 37 is necessary for efficient accumulation of p53 following irradiation with UV. Oncogene 2001; 20 : 1076–84. [Google Scholar]
  19. Price BD, Hughesdavies L, Park SJ. cdk2 kinase phosphorylates serine 315 of human p53 in vitro. Oncogene 1995; 11 : 73–80. [Google Scholar]
  20. Bischoff JR, Friedman PN, Marshak DR, Prives C, Beach D. Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc Natl Acad Sci USA 1990; 87 : 4766–70. [Google Scholar]
  21. Jimenez GS, Bryntesson F, Torres-Arzayus MI, et al. DNA-dependent protein kinase is not required for the p53-dependent response to DNA damage. Nature 1999; 400 : 81–3. [Google Scholar]
  22. Chernov MV, Bean LJH, Lerner N, Stark GR. Regulation of ubiquitination and degradation of p53 in unstressed cells through C-terminal phosphorylation. J Biol Chem 2001; 276 : 31819–24. [Google Scholar]
  23. Kapoor M, Lozano G. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc Natl Acad Sci USA 1998; 95 : 2834–7. [Google Scholar]
  24. Cuddihy AR, Wong AH, Tam NW, Li S, Koromilas AE. The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 1999; 18 : 2690–702. [Google Scholar]
  25. Sakaguchi K, Sakamoto H, Lewis MS, et al. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 1997; 36 : 10117–24. [Google Scholar]
  26. Craig AL, Blaydes JP, Burch LR, Thompson AM, Hupp TR. Dephosphorylation of p53 at Ser20 after cellular exposure to low levels of non-ionizing radiation. Oncogene 1999; 18 : 6305–12. [Google Scholar]
  27. Li L, Ljungman M, Dixon JE. The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53. J Biol Chem 2000; 275 : 2410–4. [Google Scholar]
  28. Stavridi ES, Chehab NH, Malikzay A, Halazonetis TD. Substitutions that compromise the ionizing radiationinduced association of p53 with 14-3-3 proteins also compromise the ability of p53 to induce cell cycle arrest. Cancer Res 2001; 61 : 7030–3. [Google Scholar]
  29. Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN. Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 1998; 273 : 33048–53. [Google Scholar]
  30. Prives C, Manley JL. Why is p53 acetylated? Cell 2001; 107 : 815–8. [Google Scholar]
  31. Gottifredi V, Shieh SY, Prives C. Regulation of p53 after different forms of stress and at different cell cycle stages. Cold Spring Harbor Symp Quant Biol 2000; 65 : 483–8. [Google Scholar]
  32. Momand J, Wu HH, Dasgupta G. MDM2 - master regulator of the p53 tumor suppressor protein. Gene 2000; 242 : 15–29. [Google Scholar]
  33. Grossman SR, Perez M, Kung AL, et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 1998; 2 : 405–15. [Google Scholar]
  34. Kubbutat MH, Ludwig RL, Ashcroft M, Vousden KH. Regulation of Mdm2-directed degradation by the C terminus of p53. Mol Cell Biol 1998; 18 : 5690–8. [Google Scholar]
  35. Pomerantz J, Schreiberagus N, Liegeois NJ, et al. The Ink4a tumor suppressor gene product, p19(Arf), interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998;92 : 713–23. [Google Scholar]
  36. Woods DB, Vousden KH. Regulation of p53 function. Exp Cell Res 2001; 264 : 56–66. [Google Scholar]
  37. Zhao RB, Gish K, Murphy M, et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 2000; 14 : 981–93. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.