Free Access
Med Sci (Paris)
Volume 18, Number 5, Mai 2002
Page(s) 585 - 594
Section Le Magazine : Articles de Synthèse
Published online 15 May 2002
  1. Wickner S, Maurizi MR, Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999; 286 : 1888–93. [Google Scholar]
  2. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 2000; 101 : 451–4. [Google Scholar]
  3. Lee AS. Mammalian stress response: induction of the glucose-regulated protein family. Curr Opin Cell Biol 1992; 4 : 267–73. [Google Scholar]
  4. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 1999; 13 : 1211–33. [Google Scholar]
  5. Pahl HL. Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev 1999; 79 : 683–701. [Google Scholar]
  6. Lee YK, Brewer JW, Hellman R, Hendershot LM. BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly. Mol Biol Cell 1999; 10 : 2209–19. [Google Scholar]
  7. Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2000; 2 : 379–84. [Google Scholar]
  8. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000; 101 : 249–58. [Google Scholar]
  9. Cox JS, Shamu CE, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 1993; 73 : 1197–206. [Google Scholar]
  10. Mori K, Ma W, Gething MJ, Sambrook J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 1993; 74 : 743–56. [Google Scholar]
  11. Sidrauski C, Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 1997; 90 : 1031–9. [Google Scholar]
  12. Shamu CE, Walter P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J 1996; 15 : 3028–39. [Google Scholar]
  13. Welihinda AA, Kaufman RJ. The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and transphosphorylation of Ire1p (Ern1p) are required for kinase activation. J Biol Chem 1996; 271 : 18181–7. [Google Scholar]
  14. Cox JS, Walter P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 1996; 87 : 391–404. [Google Scholar]
  15. Kawahara T, Yanagi H, Yura T, Mori K. Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol Biol Cell 1997; 8 : 1845–62. [Google Scholar]
  16. Kawahara T, Yanagi H, Yura T, Mori K. Unconventional splicing of HAC1/ERN4 mRNA required for the unfolded protein response. Sequence-specific and nonsequential cleavage of the splice sites. J Biol Chem 1998; 273 : 1802–7. [Google Scholar]
  17. Sidrauski C, Cox JS, Walter P. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 1996; 87 : 405–13. [Google Scholar]
  18. Chapman RE, Walter P. Translational attenuation mediated by an mRNA intron. Curr Biol 1997; 7 : 850–9. [Google Scholar]
  19. Casagrande R, Stern P, Diehn M, et al. Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol Cell 2000; 5 : 729–35. [Google Scholar]
  20. McCracken AA, Brodsky JL. A molecular portrait of the response to unfolded proteins. Genome Biol 2000; 1 : 10–3. [Google Scholar]
  21. Bertolotti A, Wang X, Novoa I, et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J Clin Invest 2001; 107 : 585–93. [Google Scholar]
  22. Tirasophon W, Welihinda AA, Kaufman RJ. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 1998; 12 : 1812–24. [Google Scholar]
  23. Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 1998; 17 : 5708–17. [Google Scholar]
  24. Bertolotti A, Zhang Y,Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded protein response. Nat Cell Biol 2000; 2 : 326–32. [Google Scholar]
  25. Niwa M, Sidrauski C, Kaufman RJ, Walter P. A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 1999; 99 : 691–702. [Google Scholar]
  26. Tirasophon W, Lee K, Callaghan B, Welihinda A, Kaufman RJ. The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev 2000; 14 : 2725–36. [Google Scholar]
  27. Calfon M, Zeng H, Urano F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415 : 92–6. [Google Scholar]
  28. Shen X, Ellis RE, Lee K, et al. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 2001; 107 : 893–903. [Google Scholar]
  29. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001; 107 : 881–91. [Google Scholar]
  30. Urano F, Bertolotti A, Ron D. IRE1 and efferent signaling from the endoplasmic reticulum. J Cell Sci 2000;113 : 3697–702. [Google Scholar]
  31. Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cisacting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucoseregulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 1998; 273 : 33741–9. [Google Scholar]
  32. Yoshida H, Okada T, Haze K, et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 2000; 20 : 6755–67. [Google Scholar]
  33. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999; 10 : 3787–99. [Google Scholar]
  34. Yoshida H, Okada T, Haze K, et al. Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol Cell Biol 2001; 21 : 1239–48. [Google Scholar]
  35. Haze K, Okada T, Yoshida H, et al. Identification of the G13 (cAMP-response element binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem J 2001; 355 : 19–28. [Google Scholar]
  36. Ye J, Rawson RB, Komuro R, et al. ER stress induces cleavage of membranebound ATF6 by the same proteases that process SREBPs. Mol Cell 2000; 6 : 1355–64. [Google Scholar]
  37. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000; 5 : 897–904. [Google Scholar]
  38. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulumresident kinase. Nature 1999; 397 : 271–4. [Google Scholar]
  39. Liu CY, Schroder M, Kaufman RJ. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 2000; 275 : 24881–5. [Google Scholar]
  40. Harding HP, Novoa II, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000; 6 : 1099–108. [Google Scholar]
  41. Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000; 287 : 664–6. [Google Scholar]
  42. Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998; 12 : 982–95. [Google Scholar]
  43. Pahl HL, Baeuerle PA. Activation of NF-kappa B by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett 1996; 392 : 129–36. [Google Scholar]
  44. Kopito RR, Ron D. Conformational disease. Nat Cell Biol 2000; 2 : E207–9. [Google Scholar]
  45. Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stressinduced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 2000; 275 : 35661–4. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.