Free Access
Med Sci (Paris)
Volume 18, Number 5, Mai 2002
Page(s) 595 - 604
Section Le Magazine : Articles de Synthèse
Published online 15 May 2002
  1. Teulon J. Propriétés et fonctions des canaux chlorure des épithéliums. In : Clérici C, Friedlander G, eds. Biologie et pathologie des épithéliums. Paris : Éditions EDK, 2000 : 97–106. [Google Scholar]
  2. Edelman A, Fanen P. CFTR (cystic fibrosis transmembrane conductance regulator), une protéine multifonctionnelle. In : Clérici C, Friedlander G, eds. Biologie et pathologie des épithéliums. Paris : Éditions EDK, 2000 : 69–79. [Google Scholar]
  3. Jentsch TJ, Friedrich T, Schriever A, Yamada H. The ClC chloride channel family. Pflüg Arch 1999; 437 : 783–95. [Google Scholar]
  4. Wills NK, Fong P. ClC chloride channels in epithelia: recent progress and remaining puzzles. News Physiol Sci 2001; 16 : 161–6. [Google Scholar]
  5. Uchida S. In vivo role of CLC chloride channels in the kidney. Am J Physiol Renal Physiol 2000; 279 : F802–8. [Google Scholar]
  6. Maduke M, Miller C, Mindell JA. A decade of ClC chloride channels: structure, mechanism, and many unsettled questions. Annu Rev Biophys Biomol Struct 2000; 29 : 411–38. [Google Scholar]
  7. Fahlke C. Ion permeation and selectivity in ClC-type chloride channels. Am J Physiol Renal Physiol 2001; 280 : F748–57. [Google Scholar]
  8. Schriever AM, Friedrich T, Pusch M, Jentsch TJ. ClC chloride channels in Caenorhabditis elegans. J Biol Chem 1999; 274 : 34238–44. [Google Scholar]
  9. Foskett JK. ClC and CFTR chloride channel gating. Annu Rev Physiol 1998; 60 : 689–717. [Google Scholar]
  10. Rychkov GY, Pusch M, Roberts ML, Jentsch TJ, Bretag AH. Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions. J Gen Physiol 1998; 111 : 653–65. [Google Scholar]
  11. Pusch M. Knocking on channel’s door. The permeating chloride ion acts as the gating charge in ClC-0. J Gen Physiol 1996; 108 : 233–6. [Google Scholar]
  12. Hussy N, Forestier C, Vavasseur A, Becq F, Valmier J. Les canaux chlorure ou comment un poisson électrique éclaire la pathologie humaine. Med Sci 1999; 15 : 1003–7. [Google Scholar]
  13. Miller C, White MM. Dimeric structure of single chloride channels from Torpedo electroplax. Proc Natl Acad Sci USA 1984; 81 : 2772–5. [Google Scholar]
  14. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 2002; 415 : 287–94. [Google Scholar]
  15. Pusch M, Jordt SE, Stein V, Jentsch TJ. Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol 1999; 515 : 341–53. [Google Scholar]
  16. Lehmann-Horn F, Jurkat-Rott K. Voltage-gated ion channels and hereditary disease. Physiol Rev 1999; 79 : 1317–72. [Google Scholar]
  17. Bryant SH, Morales-Aguilera A. Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. J Physiol 1971; 219 : 367–83. [Google Scholar]
  18. Adrian RH, Bryant SH. On the repetitive discharge in myotonic muscle fibres. J. Physiol 1974; 240 : 505–15. [Google Scholar]
  19. Guinamard R, Chraibi A, Teulon J. A small conductance Cl channel in the mouse thick ascending limb that is activated by ATP and protein kinase A. J Physiol (Lond) 1995; 485 : 97–112. [Google Scholar]
  20. Paulais M, Teulon J. cAMP-activated chloride channel in the basolateral membrane of the thick ascending limb of the mouse kidney. J Membr Biol 1990; 113 : 253–60. [Google Scholar]
  21. Reeves WB, Winters CJ, Andreoli TE. Chloride channels in the loop of Henle. Annu Rev Physiol 2001; 63 : 631–45. [Google Scholar]
  22. Jeck N, Konrad M, Peters M, Weber S, Bonzel KE, Seyberth HW. Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter-Gitelman phenotype. Pediatr Res 2000; 48 : 754–8. [Google Scholar]
  23. Blanchard A, Poussou R, Paillard M. Syndromes de Bartter et Gitelman : deux syndromes, quatre gènes. Med Ther Endocrinal 2000; 2 : 301–9. [Google Scholar]
  24. Scheinman SJ. X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int 1998; 53 : 3–17. [Google Scholar]
  25. Leheste JR, Rolinski B, Vorum H, et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 1999; 155 : 1361–70. [Google Scholar]
  26. Mellman I, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 1986; 55 : 663–700. [Google Scholar]
  27. Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ. ClC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci USA 1998; 95 : 8075–80. [Google Scholar]
  28. Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ. ClC-5 Cl- channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 2000; 408 : 369–73. [Google Scholar]
  29. Vandewalle A, Cluzeaud F, Peng KC, et al. Tissue distribution and subcellular localization of the ClC-5 chloride channel in rat intestinal cells. Am J Physiol Cell Physiol 2001; 280 : C373–81. [Google Scholar]
  30. Noulin JF, Fayolle-Julien E, Desaphy JF, Poindessault JP, Joffre M. Swelling and cAMP on hyperpolarization-activated Cl- conductance in rat Leydig cells. Am J Physiol 1996; 271 : C74–84. [Google Scholar]
  31. Fritsch J, Edelman A. Modulation of the hyperpolarization-activated Cl- current in human intestinal T84 epithelial cells by phosphorylation. J Physiol 1996; 490 : 115–28. [Google Scholar]
  32. Stobrawa SM, Breiderhoff T, Takamori S, et al. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 2001; 29 : 185–96. [Google Scholar]
  33. Poulain B. Libération des neurotransmetteurs. In : Tritsch D, Chesnoy-Marchais D, Feltz A, eds. Physiologie du neurone. Paris : Doin, 1998 : 529–68. [Google Scholar]
  34. Buyse G, Trouet D, Voets T, et al. Evidence for the intracellular location of chloride channel (ClC)-type proteins: co-localization of ClC-6a and ClC-6c with the sarco/endoplasmic-reticulum Ca2+ pump SERCA2b. Biochem J 1998; 330 : 1015–21. [Google Scholar]
  35. Kornak U, Kasper D, Bosl MR, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001; 104 : 205–15. [Google Scholar]
  36. Davis-Kaplan SR, Askwith CC, Bengtzen AC, Radisky D, Kaplan J. Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels. Proc Natl Acad Sci USA 1998; 95 : 13641–5. [Google Scholar]
  37. Strange K, Emma F, Jackson PS. Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol 1996; 270 : C711–30. [Google Scholar]
  38. Clapham D. How to lose your hippocampus by working on chloride channels. Neuron 2001; 29 : 1–3. [Google Scholar]
  39. Mohammad-Panah R, Ackerley C, Rommens J, Choudhury M, Wang Y, Bear CE. The chloride channel ClC-4 co-localizes with cystic fibrosis transmembrane conductance regulator and may mediate chloride flux across the apical membrane of intestinal epithelia. J Biol Chem 2002; 277 : 566–74. [Google Scholar]
  40. Cleiren E, Bénichou O, Van Hul E, et al. Albers-Schönberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 2001; 10 : 2861–7. [Google Scholar]
  41. Birkenhäger R, Otto E, Schürmann MJ, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 2001; 29 : 310–4. [Google Scholar]
  42. Estévez R, Boettger T, Stein V, et al. Barttin is a Cl- channel beta-subunit crucial for renal-Cl- reabsorption and inner ear K+ secretion. Nature 2001; 414 : 558–61. [Google Scholar]
  43. Chen TY, Miller C. Nonequilibrium gating and voltage dependence of the ClC-0 Cl- channel. J Gen Physiol 1996; 108 : 237–50. [Google Scholar]
  44. Pusch M, Ludewig U, Rehfeldt A, Jentsch TJ. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature 1995; 373 : 527–31. [Google Scholar]
  45. Fahlke C, Rudel R, Mitrovic N, Zhou M, George AL Jr. An aspartic acid residue important for voltage-dependent gating of human muscle chloride channels. Neuron 1995; 15 : 463–72. [Google Scholar]
  46. Kaissling B. Structural aspects of adaptive changes in renal electrolyte excretion. Am J Physiol 1982; 243 : F211–26. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.