Accès gratuit
Numéro
Med Sci (Paris)
Volume 18, Numéro 5, Mai 2002
Page(s) 595 - 604
Section Le Magazine : Articles de Synthèse
DOI https://doi.org/10.1051/medsci/2002185595
Publié en ligne 15 mai 2002
  1. Teulon J. Propriétés et fonctions des canaux chlorure des épithéliums. In : Clérici C, Friedlander G, eds. Biologie et pathologie des épithéliums. Paris : Éditions EDK, 2000 : 97–106. [Google Scholar]
  2. Edelman A, Fanen P. CFTR (cystic fibrosis transmembrane conductance regulator), une protéine multifonctionnelle. In : Clérici C, Friedlander G, eds. Biologie et pathologie des épithéliums. Paris : Éditions EDK, 2000 : 69–79. [Google Scholar]
  3. Jentsch TJ, Friedrich T, Schriever A, Yamada H. The ClC chloride channel family. Pflüg Arch 1999; 437 : 783–95. [Google Scholar]
  4. Wills NK, Fong P. ClC chloride channels in epithelia: recent progress and remaining puzzles. News Physiol Sci 2001; 16 : 161–6. [Google Scholar]
  5. Uchida S. In vivo role of CLC chloride channels in the kidney. Am J Physiol Renal Physiol 2000; 279 : F802–8. [Google Scholar]
  6. Maduke M, Miller C, Mindell JA. A decade of ClC chloride channels: structure, mechanism, and many unsettled questions. Annu Rev Biophys Biomol Struct 2000; 29 : 411–38. [Google Scholar]
  7. Fahlke C. Ion permeation and selectivity in ClC-type chloride channels. Am J Physiol Renal Physiol 2001; 280 : F748–57. [Google Scholar]
  8. Schriever AM, Friedrich T, Pusch M, Jentsch TJ. ClC chloride channels in Caenorhabditis elegans. J Biol Chem 1999; 274 : 34238–44. [Google Scholar]
  9. Foskett JK. ClC and CFTR chloride channel gating. Annu Rev Physiol 1998; 60 : 689–717. [Google Scholar]
  10. Rychkov GY, Pusch M, Roberts ML, Jentsch TJ, Bretag AH. Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions. J Gen Physiol 1998; 111 : 653–65. [Google Scholar]
  11. Pusch M. Knocking on channel’s door. The permeating chloride ion acts as the gating charge in ClC-0. J Gen Physiol 1996; 108 : 233–6. [Google Scholar]
  12. Hussy N, Forestier C, Vavasseur A, Becq F, Valmier J. Les canaux chlorure ou comment un poisson électrique éclaire la pathologie humaine. Med Sci 1999; 15 : 1003–7. [Google Scholar]
  13. Miller C, White MM. Dimeric structure of single chloride channels from Torpedo electroplax. Proc Natl Acad Sci USA 1984; 81 : 2772–5. [Google Scholar]
  14. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 2002; 415 : 287–94. [Google Scholar]
  15. Pusch M, Jordt SE, Stein V, Jentsch TJ. Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol 1999; 515 : 341–53. [Google Scholar]
  16. Lehmann-Horn F, Jurkat-Rott K. Voltage-gated ion channels and hereditary disease. Physiol Rev 1999; 79 : 1317–72. [Google Scholar]
  17. Bryant SH, Morales-Aguilera A. Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. J Physiol 1971; 219 : 367–83. [Google Scholar]
  18. Adrian RH, Bryant SH. On the repetitive discharge in myotonic muscle fibres. J. Physiol 1974; 240 : 505–15. [Google Scholar]
  19. Guinamard R, Chraibi A, Teulon J. A small conductance Cl channel in the mouse thick ascending limb that is activated by ATP and protein kinase A. J Physiol (Lond) 1995; 485 : 97–112. [Google Scholar]
  20. Paulais M, Teulon J. cAMP-activated chloride channel in the basolateral membrane of the thick ascending limb of the mouse kidney. J Membr Biol 1990; 113 : 253–60. [Google Scholar]
  21. Reeves WB, Winters CJ, Andreoli TE. Chloride channels in the loop of Henle. Annu Rev Physiol 2001; 63 : 631–45. [Google Scholar]
  22. Jeck N, Konrad M, Peters M, Weber S, Bonzel KE, Seyberth HW. Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter-Gitelman phenotype. Pediatr Res 2000; 48 : 754–8. [Google Scholar]
  23. Blanchard A, Poussou R, Paillard M. Syndromes de Bartter et Gitelman : deux syndromes, quatre gènes. Med Ther Endocrinal 2000; 2 : 301–9. [Google Scholar]
  24. Scheinman SJ. X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int 1998; 53 : 3–17. [Google Scholar]
  25. Leheste JR, Rolinski B, Vorum H, et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 1999; 155 : 1361–70. [Google Scholar]
  26. Mellman I, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 1986; 55 : 663–700. [Google Scholar]
  27. Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ. ClC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci USA 1998; 95 : 8075–80. [Google Scholar]
  28. Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ. ClC-5 Cl- channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 2000; 408 : 369–73. [Google Scholar]
  29. Vandewalle A, Cluzeaud F, Peng KC, et al. Tissue distribution and subcellular localization of the ClC-5 chloride channel in rat intestinal cells. Am J Physiol Cell Physiol 2001; 280 : C373–81. [Google Scholar]
  30. Noulin JF, Fayolle-Julien E, Desaphy JF, Poindessault JP, Joffre M. Swelling and cAMP on hyperpolarization-activated Cl- conductance in rat Leydig cells. Am J Physiol 1996; 271 : C74–84. [Google Scholar]
  31. Fritsch J, Edelman A. Modulation of the hyperpolarization-activated Cl- current in human intestinal T84 epithelial cells by phosphorylation. J Physiol 1996; 490 : 115–28. [Google Scholar]
  32. Stobrawa SM, Breiderhoff T, Takamori S, et al. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 2001; 29 : 185–96. [Google Scholar]
  33. Poulain B. Libération des neurotransmetteurs. In : Tritsch D, Chesnoy-Marchais D, Feltz A, eds. Physiologie du neurone. Paris : Doin, 1998 : 529–68. [Google Scholar]
  34. Buyse G, Trouet D, Voets T, et al. Evidence for the intracellular location of chloride channel (ClC)-type proteins: co-localization of ClC-6a and ClC-6c with the sarco/endoplasmic-reticulum Ca2+ pump SERCA2b. Biochem J 1998; 330 : 1015–21. [Google Scholar]
  35. Kornak U, Kasper D, Bosl MR, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001; 104 : 205–15. [Google Scholar]
  36. Davis-Kaplan SR, Askwith CC, Bengtzen AC, Radisky D, Kaplan J. Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels. Proc Natl Acad Sci USA 1998; 95 : 13641–5. [Google Scholar]
  37. Strange K, Emma F, Jackson PS. Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol 1996; 270 : C711–30. [Google Scholar]
  38. Clapham D. How to lose your hippocampus by working on chloride channels. Neuron 2001; 29 : 1–3. [Google Scholar]
  39. Mohammad-Panah R, Ackerley C, Rommens J, Choudhury M, Wang Y, Bear CE. The chloride channel ClC-4 co-localizes with cystic fibrosis transmembrane conductance regulator and may mediate chloride flux across the apical membrane of intestinal epithelia. J Biol Chem 2002; 277 : 566–74. [Google Scholar]
  40. Cleiren E, Bénichou O, Van Hul E, et al. Albers-Schönberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 2001; 10 : 2861–7. [Google Scholar]
  41. Birkenhäger R, Otto E, Schürmann MJ, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 2001; 29 : 310–4. [Google Scholar]
  42. Estévez R, Boettger T, Stein V, et al. Barttin is a Cl- channel beta-subunit crucial for renal-Cl- reabsorption and inner ear K+ secretion. Nature 2001; 414 : 558–61. [Google Scholar]
  43. Chen TY, Miller C. Nonequilibrium gating and voltage dependence of the ClC-0 Cl- channel. J Gen Physiol 1996; 108 : 237–50. [Google Scholar]
  44. Pusch M, Ludewig U, Rehfeldt A, Jentsch TJ. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature 1995; 373 : 527–31. [Google Scholar]
  45. Fahlke C, Rudel R, Mitrovic N, Zhou M, George AL Jr. An aspartic acid residue important for voltage-dependent gating of human muscle chloride channels. Neuron 1995; 15 : 463–72. [Google Scholar]
  46. Kaissling B. Structural aspects of adaptive changes in renal electrolyte excretion. Am J Physiol 1982; 243 : F211–26. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.