Free Access
Med Sci (Paris)
Volume 18, Number 5, Mai 2002
Page(s) 565 - 575
Section Le Magazine : Articles de Synthèse
Published online 15 May 2002
  1. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 2000; 18 : 1135–49. [Google Scholar]
  2. Marchenko GN, Ratnikov BI, Rozanov DV, Godzik A, Deryugina EI, Strongin AY. Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. Biochem J 2001; 356 : 705–18. [Google Scholar]
  3. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2000; 10 : 415–33. [Google Scholar]
  4. DeClerck YA. Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. Eur J Cancer 2000; 36 :1258–68. [Google Scholar]
  5. Shofuda K, Moriyama K, Nishihashi A, et al. Role of tissue inhibitor of metalloproteinases-2 (TIMP-2) in regulation of pro-gelatinase A activation catalyzed by membranetype matrix metalloproteinase-1 (MT1-MRP) in human cancer cells. J Biochem (Tokyo) 1998; 124 : 462–70. [Google Scholar]
  6. Shapiro SD, Kobayashi DK, Ley TJ. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem 1993; 268 : 23824–9. [Google Scholar]
  7. Llano E, Pendas AM, Knauper V, et al. Identification and structural and functional characterization of human enamelysin (MMP-20). Biochemistry 1997; 36 : 15101–8. [Google Scholar]
  8. Bode W, Fernandez-Catalan C, Grams F, et al. Insights into MMP-TIMP interactions. Ann NY Acad Sci 1999; 878 : 73–91. [Google Scholar]
  9. Birkedal Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 1995; 7 : 728–35. [Google Scholar]
  10. Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem Hoppe Seyler 1997; 378 : 151–60. [Google Scholar]
  11. Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 1997; 139 : 1861–72. [Google Scholar]
  12. Crawford HC, Fingleton BM, Rudolph-Owen LA, et al. The metalloproteinase matrilysin is a target of b-catenin transactivation in intestinal tumors. Oncogene 1999; 18 : 2883–91. [Google Scholar]
  13. Stetler Stevenson WG, Liotta LA, Kleiner DE Jr. Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J 1993; 7 : 1434–41. [Google Scholar]
  14. Basset P, Okada A, Chenard MP, et al. Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications. Matrix Biol 1997; 15 : 535–41. [Google Scholar]
  15. DeClerck YA, Perez N, Shimada H, Boone TC, Langley KE, Taylor SM. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 1992; 52 : 701–8. [Google Scholar]
  16. Martin DC, Fowlkes JL, Babic B, Khokha R. Insulin like growth factor II signaling in neoplastic proliferation is blocked by transgenic expression of the metalloproteinase inhibitor TIMP-1. J Cell Biol 1999; 146 : 881–92. [Google Scholar]
  17. Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 1996; 271 : 10079–86. [Google Scholar]
  18. Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO- alpha and leaves RANTES and MCP-2 intact. Blood 2000; 96 : 2673–81. [Google Scholar]
  19. Lombard MA, Wallace TL, Kubicek MF, et al. Synthetic matrix metalloproteinase inhibitors and tissue inhibitor of metalloproteinase (TIMP)-2, but not TIMP-1, inhibit shedding of tumor necrosis factor-α receptors in a human colon adenocarcinoma (Colo 205) cell line. Cancer Res 1998; 58 : 4001–7. [Google Scholar]
  20. Henriet P, Zhong ZD, Brooks PC, Weinberg KI, DeClerck YA. Contact with fibrillar collagen inhibits melanoma cell proliferation by upregulating p27KIP1. Proc Natl Acad Sci USA 2000; 97 : 1026–31. [Google Scholar]
  21. Petitclerc E, Stromblad S, von Schalscha TL, et al. Integrin alpha(v)beta3 promotes M21 melanoma growth in human skin by regulating tumor cell survival. Cancer Res 1999; 59 : 2724–30. [Google Scholar]
  22. Boulay A, Masson R, Chenard MP, et al. High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res 2001; 61 : 2189–93. [Google Scholar]
  23. Wu E, Mari BP, Wang F, Anderson IC, Sunday ME, Shipp MA. Stromelysin-3 suppresses tumor cell apoptosis in a murine model. J Cell Biochem 2001; 82 : 549–55. [Google Scholar]
  24. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284 : 808–12. [Google Scholar]
  25. Cornelius LA, Nehring LC, Harding E, et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 1998; 161 : 6845–52. [Google Scholar]
  26. Patterson BC, Sang QA. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 1997; 272 : 28823–5. [Google Scholar]
  27. O’Reilly MS, Wiederschain D, Stetler-Stevenson WG, Folkman J, Moses MA. Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 1999; 274 : 29568–71. [Google Scholar]
  28. Wen W, Moses MA, Wiederschain D, Arbiser JL, Folkman J. The generation of endostatin is mediated by elastase. Cancer Res 1999; 59 : 6052–6. [Google Scholar]
  29. Mignatti P, Robbins E, Rifkin DB. Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell 1986; 47 : 487–98. [Google Scholar]
  30. Koop S, Khokha R, Schmidt EE, et al. Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth. Cancer Res 1994; 54 : 4791–7. [Google Scholar]
  31. Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 2001; 93 : 178–93. [Google Scholar]
  32. Brown PD. Clinical studies with matrix metalloproteinase inhibitors. APMIS (Copenhagen) 1999; 107 : 174–80. [Google Scholar]
  33. Rudek MA, Figg WD, Dyer V, et al. Phase I clinical trial of oral COL-3, a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer. J Clin Oncol 2001; 19 : 584–92. [Google Scholar]
  34. Davies B, Brown PD, East N, Crimmin MJ, Balkwill FR. A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res 1993; 53 : 2087–91. [Google Scholar]
  35. Shalinsky DR, Brekken J, Zou H, et al. Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann NY Acad Sci 1999; 878 : 236–70. [Google Scholar]
  36. Chirivi RG, Garofalo A, Crimmin MJ, et al. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer 1994; 58 : 460–4. [Google Scholar]
  37. Eccles SA, Box GM, Court WJ, Bone EA, Thomas W, Brown PD. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res 1996; 56 : 2815–22. [Google Scholar]
  38. Giavazzi R, Garofalo A, Ferri C, et al. Batimastat, a synthetic inhibitor of matrix metalloproteinases, potentiates the antitumor activity of cisplatin in ovarian carcinoma xenografts. Clin Cancer Res 1998; 4 : 985–92. [Google Scholar]
  39. Parsons SL, Watson SA, Steele RJ. Phase I/II trial of batimastat, a matrix metalloproteinase inhibitor, in patients with malignant ascites. Eur J Surg Oncol 1997; 23 : 526–31. [Google Scholar]
  40. Wojtowicz-Praga S, Torri J, Johnson M, et al. Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J Clin Oncol 1998; 16 : 2150–6. [Google Scholar]
  41. Hande K, Wilding G, Ripple G, et al. A phase I study of AG3340, a matrix metalloprotease inhibitor, in patients having advanced cancer. Ann Oncol 1998; 9 : 74 (abstract). [Google Scholar]
  42. Erlichman C, Adjei AA, Alberts SR, et al. Phase I study of the matrix metalloproteinase inhibitor, BAY 12-9566. Ann Oncol 2001; 12 : 389–95. [Google Scholar]
  43. Ferrante K, Winograd B, Canetta R. Promising new developments in cancer chemotherapy. Cancer Chemother Pharmacol 1999; 43 (suppl) : S61–8. [Google Scholar]
  44. Levitt NC, Eskens FA, O’Byrne KJ, et al. Phase I and pharmacological study of the oral matrix metalloproteinase inhibitor, MMI270 (CGS27023a), in patients with advanced solid cancer. Clin Cancer Res 2001; 7 : 1912–22. [Google Scholar]
  45. Macaulay VM, O’Byrne KJ, Saunders MP, et al. Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin Cancer Res 1999; 5 : 513–20. [Google Scholar]
  46. Zucker S, Cao J, Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 2000; 19 : 6642–66. [Google Scholar]
  47. Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 2001; 7 : 743–8. [Google Scholar]
  48. Wielockx B, Lannoy K, Shapiro SD, et al. Inhibition of matrix metalloproteinases blocks lethal hepatitis and apoptosis induced by tumor necrosis factor and allows safe antitumor therapy. Nat Med 2001; 7 : 1202–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.