Accès gratuit
Med Sci (Paris)
Volume 18, Numéro 5, Mai 2002
Page(s) 565 - 575
Section Le Magazine : Articles de Synthèse
Publié en ligne 15 mai 2002
  1. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 2000; 18 : 1135–49. [Google Scholar]
  2. Marchenko GN, Ratnikov BI, Rozanov DV, Godzik A, Deryugina EI, Strongin AY. Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. Biochem J 2001; 356 : 705–18. [Google Scholar]
  3. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2000; 10 : 415–33. [Google Scholar]
  4. DeClerck YA. Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. Eur J Cancer 2000; 36 :1258–68. [Google Scholar]
  5. Shofuda K, Moriyama K, Nishihashi A, et al. Role of tissue inhibitor of metalloproteinases-2 (TIMP-2) in regulation of pro-gelatinase A activation catalyzed by membranetype matrix metalloproteinase-1 (MT1-MRP) in human cancer cells. J Biochem (Tokyo) 1998; 124 : 462–70. [Google Scholar]
  6. Shapiro SD, Kobayashi DK, Ley TJ. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem 1993; 268 : 23824–9. [Google Scholar]
  7. Llano E, Pendas AM, Knauper V, et al. Identification and structural and functional characterization of human enamelysin (MMP-20). Biochemistry 1997; 36 : 15101–8. [Google Scholar]
  8. Bode W, Fernandez-Catalan C, Grams F, et al. Insights into MMP-TIMP interactions. Ann NY Acad Sci 1999; 878 : 73–91. [Google Scholar]
  9. Birkedal Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 1995; 7 : 728–35. [Google Scholar]
  10. Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem Hoppe Seyler 1997; 378 : 151–60. [Google Scholar]
  11. Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 1997; 139 : 1861–72. [Google Scholar]
  12. Crawford HC, Fingleton BM, Rudolph-Owen LA, et al. The metalloproteinase matrilysin is a target of b-catenin transactivation in intestinal tumors. Oncogene 1999; 18 : 2883–91. [Google Scholar]
  13. Stetler Stevenson WG, Liotta LA, Kleiner DE Jr. Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J 1993; 7 : 1434–41. [Google Scholar]
  14. Basset P, Okada A, Chenard MP, et al. Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications. Matrix Biol 1997; 15 : 535–41. [Google Scholar]
  15. DeClerck YA, Perez N, Shimada H, Boone TC, Langley KE, Taylor SM. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 1992; 52 : 701–8. [Google Scholar]
  16. Martin DC, Fowlkes JL, Babic B, Khokha R. Insulin like growth factor II signaling in neoplastic proliferation is blocked by transgenic expression of the metalloproteinase inhibitor TIMP-1. J Cell Biol 1999; 146 : 881–92. [Google Scholar]
  17. Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 1996; 271 : 10079–86. [Google Scholar]
  18. Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO- alpha and leaves RANTES and MCP-2 intact. Blood 2000; 96 : 2673–81. [Google Scholar]
  19. Lombard MA, Wallace TL, Kubicek MF, et al. Synthetic matrix metalloproteinase inhibitors and tissue inhibitor of metalloproteinase (TIMP)-2, but not TIMP-1, inhibit shedding of tumor necrosis factor-α receptors in a human colon adenocarcinoma (Colo 205) cell line. Cancer Res 1998; 58 : 4001–7. [Google Scholar]
  20. Henriet P, Zhong ZD, Brooks PC, Weinberg KI, DeClerck YA. Contact with fibrillar collagen inhibits melanoma cell proliferation by upregulating p27KIP1. Proc Natl Acad Sci USA 2000; 97 : 1026–31. [Google Scholar]
  21. Petitclerc E, Stromblad S, von Schalscha TL, et al. Integrin alpha(v)beta3 promotes M21 melanoma growth in human skin by regulating tumor cell survival. Cancer Res 1999; 59 : 2724–30. [Google Scholar]
  22. Boulay A, Masson R, Chenard MP, et al. High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res 2001; 61 : 2189–93. [Google Scholar]
  23. Wu E, Mari BP, Wang F, Anderson IC, Sunday ME, Shipp MA. Stromelysin-3 suppresses tumor cell apoptosis in a murine model. J Cell Biochem 2001; 82 : 549–55. [Google Scholar]
  24. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284 : 808–12. [Google Scholar]
  25. Cornelius LA, Nehring LC, Harding E, et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 1998; 161 : 6845–52. [Google Scholar]
  26. Patterson BC, Sang QA. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 1997; 272 : 28823–5. [Google Scholar]
  27. O’Reilly MS, Wiederschain D, Stetler-Stevenson WG, Folkman J, Moses MA. Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 1999; 274 : 29568–71. [Google Scholar]
  28. Wen W, Moses MA, Wiederschain D, Arbiser JL, Folkman J. The generation of endostatin is mediated by elastase. Cancer Res 1999; 59 : 6052–6. [Google Scholar]
  29. Mignatti P, Robbins E, Rifkin DB. Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell 1986; 47 : 487–98. [Google Scholar]
  30. Koop S, Khokha R, Schmidt EE, et al. Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth. Cancer Res 1994; 54 : 4791–7. [Google Scholar]
  31. Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 2001; 93 : 178–93. [Google Scholar]
  32. Brown PD. Clinical studies with matrix metalloproteinase inhibitors. APMIS (Copenhagen) 1999; 107 : 174–80. [Google Scholar]
  33. Rudek MA, Figg WD, Dyer V, et al. Phase I clinical trial of oral COL-3, a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer. J Clin Oncol 2001; 19 : 584–92. [Google Scholar]
  34. Davies B, Brown PD, East N, Crimmin MJ, Balkwill FR. A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res 1993; 53 : 2087–91. [Google Scholar]
  35. Shalinsky DR, Brekken J, Zou H, et al. Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann NY Acad Sci 1999; 878 : 236–70. [Google Scholar]
  36. Chirivi RG, Garofalo A, Crimmin MJ, et al. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer 1994; 58 : 460–4. [Google Scholar]
  37. Eccles SA, Box GM, Court WJ, Bone EA, Thomas W, Brown PD. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res 1996; 56 : 2815–22. [Google Scholar]
  38. Giavazzi R, Garofalo A, Ferri C, et al. Batimastat, a synthetic inhibitor of matrix metalloproteinases, potentiates the antitumor activity of cisplatin in ovarian carcinoma xenografts. Clin Cancer Res 1998; 4 : 985–92. [Google Scholar]
  39. Parsons SL, Watson SA, Steele RJ. Phase I/II trial of batimastat, a matrix metalloproteinase inhibitor, in patients with malignant ascites. Eur J Surg Oncol 1997; 23 : 526–31. [Google Scholar]
  40. Wojtowicz-Praga S, Torri J, Johnson M, et al. Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J Clin Oncol 1998; 16 : 2150–6. [Google Scholar]
  41. Hande K, Wilding G, Ripple G, et al. A phase I study of AG3340, a matrix metalloprotease inhibitor, in patients having advanced cancer. Ann Oncol 1998; 9 : 74 (abstract). [Google Scholar]
  42. Erlichman C, Adjei AA, Alberts SR, et al. Phase I study of the matrix metalloproteinase inhibitor, BAY 12-9566. Ann Oncol 2001; 12 : 389–95. [Google Scholar]
  43. Ferrante K, Winograd B, Canetta R. Promising new developments in cancer chemotherapy. Cancer Chemother Pharmacol 1999; 43 (suppl) : S61–8. [Google Scholar]
  44. Levitt NC, Eskens FA, O’Byrne KJ, et al. Phase I and pharmacological study of the oral matrix metalloproteinase inhibitor, MMI270 (CGS27023a), in patients with advanced solid cancer. Clin Cancer Res 2001; 7 : 1912–22. [Google Scholar]
  45. Macaulay VM, O’Byrne KJ, Saunders MP, et al. Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin Cancer Res 1999; 5 : 513–20. [Google Scholar]
  46. Zucker S, Cao J, Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 2000; 19 : 6642–66. [Google Scholar]
  47. Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 2001; 7 : 743–8. [Google Scholar]
  48. Wielockx B, Lannoy K, Shapiro SD, et al. Inhibition of matrix metalloproteinases blocks lethal hepatitis and apoptosis induced by tumor necrosis factor and allows safe antitumor therapy. Nat Med 2001; 7 : 1202–8. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.