Open Access
Issue
Med Sci (Paris)
Volume 41, Number 4, Avril 2025
Page(s) 336 - 345
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025048
Published online 28 April 2025
  1. Guérin A, Moncada-Vélez M, Jackson K, et al. Helper T cell immunity in humans with inherited CD4 deficiency. J Exp Med 2024 ; 221 : e20231044. [CrossRef] [PubMed] [Google Scholar]
  2. Mora T, Walczak AM. How many different clonotypes do immune repertoires contain? Curr Op Syst Biol 2019 ; 18 : 104–10. [CrossRef] [Google Scholar]
  3. He X, He X, Dave VP, et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 2005 ; 433 : 826–33. [CrossRef] [PubMed] [Google Scholar]
  4. Egawa T, Littman DR. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nat Immunol 2008 ; 9 : 1131–9. [CrossRef] [PubMed] [Google Scholar]
  5. Shinzawa M, Moseman EA, Gossa S, et al. Reversal of the T cell immune system reveals the molecular basis for T cell lineage fate determination in the thymus. Nat Immunol 2022 ; 23 : 731–42. [CrossRef] [PubMed] [Google Scholar]
  6. Grusby MJ, Johnson RS, Papaioannou VE, et al. Depletion of CD4+ T cells in major histocompatibility complex class II-deficient mice. Science 1991 ; 253 : 1417–20. [CrossRef] [PubMed] [Google Scholar]
  7. Steimle V, Otten LA, Zufferey M, et al. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 1993 ; 75 : 135–46. [CrossRef] [PubMed] [Google Scholar]
  8. Moon JJ, Chu HH, Pepper M, et al. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 2007 ; 27 : 203–13. [CrossRef] [PubMed] [Google Scholar]
  9. Obst R, Santen H-M van, Mathis D, et al. Antigen persistence is required throughout the expansion phase of a CD4(+) T cell response. J Exp Med 2005 ; 201 : 1555–65. [CrossRef] [PubMed] [Google Scholar]
  10. Wang J, Meijers R, Xiong Y, et al. Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc Natl Acad Sci USA 2001 ; 98 : 10799–804. [CrossRef] [PubMed] [Google Scholar]
  11. Veillette A, Bookman MA, Horak EM, et al. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 1988 ; 55 : 301–8. [CrossRef] [PubMed] [Google Scholar]
  12. Mørch AM, Bálint Š, Santos AM, et al. Coreceptors and TCR Signaling – the Strong and the Weak of It. Front. Cell Dev. Biol. 2020 ; 8. [Google Scholar]
  13. Horkova V, Drobek A, Paprckova D, et al. Unique roles of co-receptor-bound LCK in helper and cytotoxic T cells. Nat Immunol 2023 ; 24 : 174–85. [CrossRef] [PubMed] [Google Scholar]
  14. Irvine DJ, Purbhoo MA, Krogsgaard M, et al. Direct observation of ligand recognition by T cells. Nature 2002 ; 419 : 845–9. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  15. Jong R de, Altare F, Haagen IA, et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 1998 ; 280 : 1435–8. [CrossRef] [PubMed] [Google Scholar]
  16. Altare F, Casanova J-L. IL-12 et IFN-γ : un axe clé de l’immunité anti- mycobactérienne chez l’homme. Med Sci (Paris) 2001 ; 17 : 1112–9. [CrossRef] [EDP Sciences] [Google Scholar]
  17. Seder RA, Paul WE, Davis MM, et al. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med 1992 ; 176 : 1091–8. [CrossRef] [PubMed] [Google Scholar]
  18. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997 ; 89 : 587–96. [CrossRef] [PubMed] [Google Scholar]
  19. Gauchat JF, Lebman DA, Coffman RL, et al. Structure and expression of germline epsilon transcripts in human B cells induced by interleukin 4 to switch to IgE production. J Exp Med 1990 ; 172 : 463–73. [CrossRef] [PubMed] [Google Scholar]
  20. Punnonen J, Aversa G, Cocks BG, et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA 1993 ; 90 : 3730–4. [CrossRef] [PubMed] [Google Scholar]
  21. Mitre E, Klion AD. Eosinophils and helminth infection: protective or pathogenic? Semin Immunopathol 2021 ; 43 : 363–81. [CrossRef] [PubMed] [Google Scholar]
  22. Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006 ; 126 : 1121–33. [CrossRef] [PubMed] [Google Scholar]
  23. Schnell A, Littman DR, Kuchroo VK. TH17 cell heterogeneity and its role in tissue inflammation. Nat Immunol 2023 ; 24 : 19–29. [CrossRef] [PubMed] [Google Scholar]
  24. Downs-Canner S, Berkey S, Delgoffe GM, et al. Suppressive IL-17A+Foxp3+ and ex-Th17 IL-17AnegFoxp3+ Treg cells are a source of tumour-associated Treg cells. Nat Commun 2017 ; 8 : 14649. [CrossRef] [PubMed] [Google Scholar]
  25. Ling Y, Cypowyj S, Aytekin C, et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med 2015 ; 212 : 619–31. [CrossRef] [PubMed] [Google Scholar]
  26. Vegran F, Martin F, Apetoh L, et al. Les lymphocytes Th9 - Une nouvelle population de lymphocytes T auxiliaires dans la lutte contre le cancer. Med Sci (Paris) 2016 ; 32 : 387–93. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  27. Zheng Y, Valdez PA, Danilenko DM, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008 ; 14 : 282–9. [CrossRef] [PubMed] [Google Scholar]
  28. Ahrends T, Busselaar J, Severson TM, et al. CD4+ T cell help creates memory CD8+ T cells with innate and help-independent recall capacities. Nat Commun 2019 ; 10 : 5531. [CrossRef] [PubMed] [Google Scholar]
  29. Castellino F, Huang AY, Altan-Bonnet G, et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 2006 ; 440 : 890–5. [CrossRef] [PubMed] [Google Scholar]
  30. Bennett SR, Carbone FR, Karamalis F, et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998 ; 393 : 478–80. [CrossRef] [PubMed] [Google Scholar]
  31. Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998 ; 393 : 474–8. [CrossRef] [PubMed] [Google Scholar]
  32. Alpan O, Bachelder E, Isil E, et al. “Educated” dendritic cells act as messengers from memory to naive T helper cells. Nat Immunol 2004 ; 5 : 615–22. [CrossRef] [PubMed] [Google Scholar]
  33. Breitfeld D, Ohl L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 2000 ; 192 : 1545–52. [CrossRef] [PubMed] [Google Scholar]
  34. DiSanto JP, Bonnefoy JY, Gauchat JF, et al. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature 1993 ; 361 : 541–3. [CrossRef] [PubMed] [Google Scholar]
  35. Leclair L, Depil S. Les lymphocytes T CD4+ jouent un rôle majeur dans la réponse immunitaire antitumorale. Med Sci (Paris) 2021 ; 37 : 671–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Sledzinska A, Vila de Mucha M, Bergerhoff K, et al. Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4+ T Cells. Immunity 2020 ; 52 : 151–66. e6. [CrossRef] [PubMed] [Google Scholar]
  37. Bawden EG, Wagner T, Schröder J, et al. CD4+ T cell immunity against cutaneous melanoma encompasses multifaceted MHC II-dependent responses. Sci Immunol 2024 ; 9 : eadi9517. [CrossRef] [PubMed] [Google Scholar]
  38. Perez-Diez A, Joncker NT, Choi K, et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 2007 ; 109 : 5346–54. [CrossRef] [PubMed] [Google Scholar]
  39. Quezada SA, Simpson TR, Peggs KS, et al. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 2010 ; 207 : 637–50. [CrossRef] [PubMed] [Google Scholar]
  40. Verma S, Weiskopf D, Gupta A, et al. Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J Virol 2015 ; 90 : 650–8. [Google Scholar]
  41. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003 ; 4 : 330–6. [CrossRef] [PubMed] [Google Scholar]
  42. Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024 ; 21 : 337–53. [CrossRef] [PubMed] [Google Scholar]
  43. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001 ; 27 : 20–1. [CrossRef] [PubMed] [Google Scholar]
  44. Kanamori M, Nakatsukasa H, Okada M, et al. Induced Regulatory T Cells: Their Development, Stability, and Applications. Trends Immunol 2016 ; 37 : 803–11. [CrossRef] [PubMed] [Google Scholar]
  45. Groux H, O’Garra A, Bigler M, et al. A CD4+ T-cell subset inhibits antigen- specific T-cell responses and prevents colitis. Nature 1997 ; 389 : 737–42. [CrossRef] [PubMed] [Google Scholar]
  46. Freeborn RA, Strubbe S, Roncarolo MG. Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2022 ; 13 : 1032575. [CrossRef] [PubMed] [Google Scholar]
  47. Bonnal RJP, Rossetti G, Lugli E, et al. Clonally expanded EOMES+ Tr1-like cells in primary and metastatic tumors are associated with disease progression. Nat Immunol 2021 ; 22 : 735–45. [CrossRef] [PubMed] [Google Scholar]
  48. Sultan H, Takeuchi Y, Ward JP, et al. Neoantigen-specific cytotoxic Tr1 CD4 T cells suppress cancer immunotherapy. Nature 2024 ; 632 : 182–91. [CrossRef] [PubMed] [Google Scholar]
  49. Laethem FV, Saba I, Tikhonova AN, et al. Rôle crucial des corécepteurs CD4 et CD8 dans la reconnaissance antigénique des lymphocytes TDE. Med Sci (Paris) 2014 ; 30 : 511–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Almeida CF, Gully BS, Jones CM, et al. Direct recognition of an intact foreign protein by an αβ T cell receptor. Nat Commun 2024 ; 15 : 8816. [CrossRef] [PubMed] [Google Scholar]
  51. Scott-Browne JP, White J, Kappler JW, et al. Germline-encoded amino acids in the DE T-cell receptor control thymic selection. Nature 2009 ; 458 : 1043–6. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.