Open Access
Issue
Med Sci (Paris)
Volume 41, Number 4, Avril 2025
Page(s) 327 - 335
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025046
Published online 28 April 2025
  1. Soares CLR, Wilairatana P, Silva LR, et al. Biochemical aspects of the inflammatory process: A narrative review. Biomed Pharmacother 2023 ; 168 : 115764. [CrossRef] [PubMed] [Google Scholar]
  2. Wei Y, Asbell PA. The core mechanism of dry eye disease is inflammation. Eye & Contact Lens 2014 ; 40 : 248–56. [CrossRef] [PubMed] [Google Scholar]
  3. Tu H, Li Y-L. Inflammation balance in skeletal muscle damage and repair. Front Immunol 2023 ; 14 : 1133355. [CrossRef] [PubMed] [Google Scholar]
  4. Tarek H, Cho SS, Hossain MS, Yoo JC. Attenuation of oxidative damage via upregulating Nrf2/HO-1 signaling pathway by protease SH21 with exerting anti-inflammatory and anticancer properties in vitro. Cells 2023 ; 12 : 2190. [CrossRef] [PubMed] [Google Scholar]
  5. Bekassy Z, Lopatko Fagerström I, Bader M, et al. Crosstalk between the renin–angiotensin, complement and kallikrein–kinin systems in inflammation. Nature Rev Immunol 2022 ; 22 : 411–28. [CrossRef] [PubMed] [Google Scholar]
  6. Dartt DA, Willcox MDP. Complexity of the Tear Film: Importance in Homeostasis and Dysfunction During Disease. Exp Eye Res 2013 ; 117 : 1–3. [CrossRef] [PubMed] [Google Scholar]
  7. Masoudi S. Biochemistry of human tear film: A review. Exp Eye Res. 2022 ; 220 : 109101. [CrossRef] [PubMed] [Google Scholar]
  8. Butovich IA. On the lipid composition of human meibum and tears: comparative analysis of nonpolar lipids. IOVS 2008 ; 49 : 3779–89. [Google Scholar]
  9. Stahl U, Willcox M, Stapleton F. Osmolality and tear film dynamics. Clin Exp Optom 2012 ; 95 : 3–11. [CrossRef] [PubMed] [Google Scholar]
  10. Pflugfelder SC, Stern ME. Biological functions of tear film. Exp Eye Res 2020 ; 197 : 108115. [CrossRef] [PubMed] [Google Scholar]
  11. Gipson IK, Argueso P. Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol 2003 ; 231 : 1–49. [CrossRef] [PubMed] [Google Scholar]
  12. Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res 2020 ; 198 : 108137. [CrossRef] [PubMed] [Google Scholar]
  13. Forrester JV, Dick AD, McMenamin PG, et al. Anatomy of the eye and orbit. In: Forrester JV, Dick AD, McMenamin PG, Roberts F, Pearlman E, eds. The Eye (Fourth Edition) Edinburgh : W.B. Saunders ; 2016. p. 1–102.e2. [Google Scholar]
  14. Van den Bogerd B, Dhubhghaill SN, Koppen C, et al. A review of the evidence for in vivo corneal endothelial regeneration. Surv Opthalmol 2018 ; 63 : 149–65. [CrossRef] [Google Scholar]
  15. Lu Q, Yin H, Grant MP, Elisseeff JH. An in vitro model for the ocular surface and tear film system. Sci Rep 2017 ; 7 : 6163. [CrossRef] [PubMed] [Google Scholar]
  16. Craig JP, Nelson JD, Azar DT, et al. TFOS DEWS II report executive summary. Ocul surf 2017 ; 15 : 802–12. [CrossRef] [PubMed] [Google Scholar]
  17. Calonge M, Enríquez-de-Salamanca A, Diebold Y, et al. Dry eye disease as an inflammatory disorder. Oucl Immunol Inflamm 2010 ; 18 : 244–53. [CrossRef] [PubMed] [Google Scholar]
  18. Hakim FE, Farooq AV. Dry Eye Disease: An Update in 2022. JAMA 2022 ; 327 : 478–9. [CrossRef] [PubMed] [Google Scholar]
  19. Fox RI. Sjögren’s syndrome. The Lancet. 2005 ; 366 : 321–31. [CrossRef] [Google Scholar]
  20. Bron AJ. The definition and classification of dry eye disease. In: Chan C, editor. Dry Eye: A Practical Approach. Berlin, Heidelberg: Springer Berlin Heidelberg ; 2015. p. 1–19. [Google Scholar]
  21. Hattori T, Takahashi H, Dana R. Novel Insights Into the Immunoregulatory Function and Localization of Dendritic Cells. Cornea 2016 ; 35 : S49–S54. [CrossRef] [PubMed] [Google Scholar]
  22. Niederkorn JY, Stern ME, Pflugfelder SC, et al. Desiccating stress induces T cell-mediated Sjogren’s Syndrome-like lacrimal keratoconjunctivitis. J Immunol 2006 ; 176 : 3950–7. [CrossRef] [PubMed] [Google Scholar]
  23. Alven A, Lema C, Redfern RL. Impact of low humidity on damage-associated molecular patterns at the ocular surface during dry eye disease. Optom Vis Sci 2021 ; 98 : 1231–8. [CrossRef] [PubMed] [Google Scholar]
  24. Caban M, Omulecki W, Latecka-Krajewska B. Dry eye in Sjögren’s syndrome – characteristics and therapy. Eur J Ophtalm 2022 ; 32 : 3174–84. [CrossRef] [PubMed] [Google Scholar]
  25. Brasnu E, Brignole-Baudouin F, Riancho L, et al. In vitro effects of preservative-free tafluprost and preserved latanoprost, travoprost, and bimatoprost in a conjunctival epithelial cell line. Curr Eye Res 2008 ; 33 : 303–12. [CrossRef] [PubMed] [Google Scholar]
  26. Clouzeau C, Godefroy D, Riancho L, et al. Hyperosmolarity potentiates toxic effects of benzalkonium chloride on conjunctival epithelial cells in vitro. Mol Vis. 2012 ; 18 : 851. [PubMed] [Google Scholar]
  27. Diebold Y, Calonge M, de Salamanca AE, et al. Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal human conjunctiva. IOVS 2003 ; 44 : 4263–74. [Google Scholar]
  28. Ma B, Zhou Y, Liu R, et al. Pigment epithelium-derived factor (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease. Ocul Surf 2021 ; 20 : 70–85. [CrossRef] [PubMed] [Google Scholar]
  29. Park B, Jo K, Lee TG, et al. Polydatin inhibits NLRP3 inflammasome in dry eye disease by attenuating oxidative stress and inhibiting the NF-NB pathway. Nutrients 2019 ; 11 : 2792. [CrossRef] [PubMed] [Google Scholar]
  30. Liu Z, Chen D, Chen X, et al. Autophagy activation protects ocular surface from inflammation in a dry eye model in vitro. Int J Mol Sci. 2020 ; 21 : 8966. [CrossRef] [PubMed] [Google Scholar]
  31. Zhang Y, Li J-M, Lu R, et al. Imbalanced IL-37/TNF-D/CTSS signaling disrupts corneal epithelial barrier in a dry eye model in vitro. Ocul Surf . 2022 ; 26 : 234–43. [CrossRef] [PubMed] [Google Scholar]
  32. Meloni M, Carriero F, Ceriotti L, et al. Development of a novel in vitro immuno-competent model of dry eye disease and its use to evaluate the efficacy of an ocular surface modulator. Ocul Immunol Inflamm. 2022 ; 30 : 1816–24. [CrossRef] [PubMed] [Google Scholar]
  33. Ma S-c, Xie Y-l, Wang Q, et al. Application of eye organoids in the study of eye diseases. Exp Eye Res 2024 ; 247 : 110068. [CrossRef] [PubMed] [Google Scholar]
  34. OECD. Test No. 492: Reconstructed human cornea-like epithelium (RhCE) test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage. 2019. [Google Scholar]
  35. García-Posadas L, Diebold Y. Three-dimensional human cell culture models to study the pathophysiology of the anterior eye. Pharmaceutics 2020 ; 12 : 1215. [CrossRef] [PubMed] [Google Scholar]
  36. Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015 ; 49 : 1–16. [CrossRef] [PubMed] [Google Scholar]
  37. Liu CY, Kao WW. Corneal epithelial wound healing. Prog Mol Biol Trans Sci. 2015 ; 134 : 61–71. [CrossRef] [Google Scholar]
  38. Bukowiecki A, Hos D, Cursiefen C, Eming SA. Wound-healing studies in cornea and skin: parallels, differences and opportunities. Int J Mol Sci 2017 ; 18 : 1257. [CrossRef] [PubMed] [Google Scholar]
  39. Tran MT, Tellaetxe-Isusi M, Elner V, et al. Proinflammatory cytokines induce RANTES and MCP-1 synthesis in human corneal keratocytes but not in corneal epithelial cells. Beta-chemokine synthesis in corneal cells. IOVS 1996 ; 37 : 987–96. [Google Scholar]
  40. Hong J-W, Liu JJ, Lee J-S, et al. Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea. IOVS 2001 ; 42 : 2795–803. [Google Scholar]
  41. Ebihara N, Matsuda A, Nakamura S, et al. Role of the IL-6 classic-and trans- signaling pathways in corneal sterile inflammation and wound healing. IOVS 2011 ; 52 : 8549–57. [Google Scholar]
  42. Funderburgh JL, Funderburgh ML, Mann MM, et al. Proteoglycan expression during transforming growth factor E-induced keratocyte-myofibroblast transdifferentiation. J Biol Chem 2001 ; 276 : 44173–8. [CrossRef] [PubMed] [Google Scholar]
  43. Du Y, SundarRaj N, Funderburgh ML, et al. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. IOVS 2007 ; 48 : 5038–45. [Google Scholar]
  44. Carrier P, Deschambeault A, Talbot M, et al. Characterization of wound reepithelialization using a new human tissue-engineered corneal wound healing model. IOVS 2008 ; 49 : 1376–85. [Google Scholar]
  45. Couture C, Zaniolo K, Carrier P, et al. The tissue-engineered human cornea as a model to study expression of matrix metalloproteinases during corneal wound healing. Biomaterials. 2016 ; 78 : 86–101. [CrossRef] [PubMed] [Google Scholar]
  46. Karamichos D, Guo XQ, Hutcheon AEK, Zieske JD. Human corneal fibrosis: an in vitro model. IOVS 2010 ; 51 : 1382–8. [Google Scholar]
  47. Jarczak D, Nierhaus A. Cytokine storm—definition, causes, and implications. Int J Mol Sci 2022 ; 23 : 11740. [CrossRef] [PubMed] [Google Scholar]
  48. Loiseau A, Raîche-Marcoux G, Maranda C, et al. Animal models in eye research: focus on corneal pathologies. Int J Mol Sci 2023 ; 24 : 16661. [CrossRef] [PubMed] [Google Scholar]
  49. Kamil S, Mohan RR. Corneal stromal wound healing: Major regulators and therapeutic targets. Ocul Surf. 2021 Jan;19:290–306. doi: 10.1016/j.jtos.2020.10.006. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.