Open Access
Numéro
Med Sci (Paris)
Volume 41, Numéro 4, Avril 2025
Page(s) 327 - 335
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025046
Publié en ligne 28 avril 2025
  1. Soares CLR, Wilairatana P, Silva LR, et al. Biochemical aspects of the inflammatory process: A narrative review. Biomed Pharmacother 2023 ; 168 : 115764. [CrossRef] [PubMed] [Google Scholar]
  2. Wei Y, Asbell PA. The core mechanism of dry eye disease is inflammation. Eye & Contact Lens 2014 ; 40 : 248–56. [CrossRef] [PubMed] [Google Scholar]
  3. Tu H, Li Y-L. Inflammation balance in skeletal muscle damage and repair. Front Immunol 2023 ; 14 : 1133355. [CrossRef] [PubMed] [Google Scholar]
  4. Tarek H, Cho SS, Hossain MS, Yoo JC. Attenuation of oxidative damage via upregulating Nrf2/HO-1 signaling pathway by protease SH21 with exerting anti-inflammatory and anticancer properties in vitro. Cells 2023 ; 12 : 2190. [CrossRef] [PubMed] [Google Scholar]
  5. Bekassy Z, Lopatko Fagerström I, Bader M, et al. Crosstalk between the renin–angiotensin, complement and kallikrein–kinin systems in inflammation. Nature Rev Immunol 2022 ; 22 : 411–28. [CrossRef] [PubMed] [Google Scholar]
  6. Dartt DA, Willcox MDP. Complexity of the Tear Film: Importance in Homeostasis and Dysfunction During Disease. Exp Eye Res 2013 ; 117 : 1–3. [CrossRef] [PubMed] [Google Scholar]
  7. Masoudi S. Biochemistry of human tear film: A review. Exp Eye Res. 2022 ; 220 : 109101. [CrossRef] [PubMed] [Google Scholar]
  8. Butovich IA. On the lipid composition of human meibum and tears: comparative analysis of nonpolar lipids. IOVS 2008 ; 49 : 3779–89. [Google Scholar]
  9. Stahl U, Willcox M, Stapleton F. Osmolality and tear film dynamics. Clin Exp Optom 2012 ; 95 : 3–11. [CrossRef] [PubMed] [Google Scholar]
  10. Pflugfelder SC, Stern ME. Biological functions of tear film. Exp Eye Res 2020 ; 197 : 108115. [CrossRef] [PubMed] [Google Scholar]
  11. Gipson IK, Argueso P. Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol 2003 ; 231 : 1–49. [CrossRef] [PubMed] [Google Scholar]
  12. Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res 2020 ; 198 : 108137. [CrossRef] [PubMed] [Google Scholar]
  13. Forrester JV, Dick AD, McMenamin PG, et al. Anatomy of the eye and orbit. In: Forrester JV, Dick AD, McMenamin PG, Roberts F, Pearlman E, eds. The Eye (Fourth Edition) Edinburgh : W.B. Saunders ; 2016. p. 1–102.e2. [Google Scholar]
  14. Van den Bogerd B, Dhubhghaill SN, Koppen C, et al. A review of the evidence for in vivo corneal endothelial regeneration. Surv Opthalmol 2018 ; 63 : 149–65. [CrossRef] [Google Scholar]
  15. Lu Q, Yin H, Grant MP, Elisseeff JH. An in vitro model for the ocular surface and tear film system. Sci Rep 2017 ; 7 : 6163. [CrossRef] [PubMed] [Google Scholar]
  16. Craig JP, Nelson JD, Azar DT, et al. TFOS DEWS II report executive summary. Ocul surf 2017 ; 15 : 802–12. [CrossRef] [PubMed] [Google Scholar]
  17. Calonge M, Enríquez-de-Salamanca A, Diebold Y, et al. Dry eye disease as an inflammatory disorder. Oucl Immunol Inflamm 2010 ; 18 : 244–53. [CrossRef] [PubMed] [Google Scholar]
  18. Hakim FE, Farooq AV. Dry Eye Disease: An Update in 2022. JAMA 2022 ; 327 : 478–9. [CrossRef] [PubMed] [Google Scholar]
  19. Fox RI. Sjögren’s syndrome. The Lancet. 2005 ; 366 : 321–31. [CrossRef] [Google Scholar]
  20. Bron AJ. The definition and classification of dry eye disease. In: Chan C, editor. Dry Eye: A Practical Approach. Berlin, Heidelberg: Springer Berlin Heidelberg ; 2015. p. 1–19. [Google Scholar]
  21. Hattori T, Takahashi H, Dana R. Novel Insights Into the Immunoregulatory Function and Localization of Dendritic Cells. Cornea 2016 ; 35 : S49–S54. [CrossRef] [PubMed] [Google Scholar]
  22. Niederkorn JY, Stern ME, Pflugfelder SC, et al. Desiccating stress induces T cell-mediated Sjogren’s Syndrome-like lacrimal keratoconjunctivitis. J Immunol 2006 ; 176 : 3950–7. [CrossRef] [PubMed] [Google Scholar]
  23. Alven A, Lema C, Redfern RL. Impact of low humidity on damage-associated molecular patterns at the ocular surface during dry eye disease. Optom Vis Sci 2021 ; 98 : 1231–8. [CrossRef] [PubMed] [Google Scholar]
  24. Caban M, Omulecki W, Latecka-Krajewska B. Dry eye in Sjögren’s syndrome – characteristics and therapy. Eur J Ophtalm 2022 ; 32 : 3174–84. [CrossRef] [PubMed] [Google Scholar]
  25. Brasnu E, Brignole-Baudouin F, Riancho L, et al. In vitro effects of preservative-free tafluprost and preserved latanoprost, travoprost, and bimatoprost in a conjunctival epithelial cell line. Curr Eye Res 2008 ; 33 : 303–12. [CrossRef] [PubMed] [Google Scholar]
  26. Clouzeau C, Godefroy D, Riancho L, et al. Hyperosmolarity potentiates toxic effects of benzalkonium chloride on conjunctival epithelial cells in vitro. Mol Vis. 2012 ; 18 : 851. [PubMed] [Google Scholar]
  27. Diebold Y, Calonge M, de Salamanca AE, et al. Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal human conjunctiva. IOVS 2003 ; 44 : 4263–74. [Google Scholar]
  28. Ma B, Zhou Y, Liu R, et al. Pigment epithelium-derived factor (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease. Ocul Surf 2021 ; 20 : 70–85. [CrossRef] [PubMed] [Google Scholar]
  29. Park B, Jo K, Lee TG, et al. Polydatin inhibits NLRP3 inflammasome in dry eye disease by attenuating oxidative stress and inhibiting the NF-NB pathway. Nutrients 2019 ; 11 : 2792. [CrossRef] [PubMed] [Google Scholar]
  30. Liu Z, Chen D, Chen X, et al. Autophagy activation protects ocular surface from inflammation in a dry eye model in vitro. Int J Mol Sci. 2020 ; 21 : 8966. [CrossRef] [PubMed] [Google Scholar]
  31. Zhang Y, Li J-M, Lu R, et al. Imbalanced IL-37/TNF-D/CTSS signaling disrupts corneal epithelial barrier in a dry eye model in vitro. Ocul Surf . 2022 ; 26 : 234–43. [CrossRef] [PubMed] [Google Scholar]
  32. Meloni M, Carriero F, Ceriotti L, et al. Development of a novel in vitro immuno-competent model of dry eye disease and its use to evaluate the efficacy of an ocular surface modulator. Ocul Immunol Inflamm. 2022 ; 30 : 1816–24. [CrossRef] [PubMed] [Google Scholar]
  33. Ma S-c, Xie Y-l, Wang Q, et al. Application of eye organoids in the study of eye diseases. Exp Eye Res 2024 ; 247 : 110068. [CrossRef] [PubMed] [Google Scholar]
  34. OECD. Test No. 492: Reconstructed human cornea-like epithelium (RhCE) test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage. 2019. [Google Scholar]
  35. García-Posadas L, Diebold Y. Three-dimensional human cell culture models to study the pathophysiology of the anterior eye. Pharmaceutics 2020 ; 12 : 1215. [CrossRef] [PubMed] [Google Scholar]
  36. Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015 ; 49 : 1–16. [CrossRef] [PubMed] [Google Scholar]
  37. Liu CY, Kao WW. Corneal epithelial wound healing. Prog Mol Biol Trans Sci. 2015 ; 134 : 61–71. [CrossRef] [Google Scholar]
  38. Bukowiecki A, Hos D, Cursiefen C, Eming SA. Wound-healing studies in cornea and skin: parallels, differences and opportunities. Int J Mol Sci 2017 ; 18 : 1257. [CrossRef] [PubMed] [Google Scholar]
  39. Tran MT, Tellaetxe-Isusi M, Elner V, et al. Proinflammatory cytokines induce RANTES and MCP-1 synthesis in human corneal keratocytes but not in corneal epithelial cells. Beta-chemokine synthesis in corneal cells. IOVS 1996 ; 37 : 987–96. [Google Scholar]
  40. Hong J-W, Liu JJ, Lee J-S, et al. Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea. IOVS 2001 ; 42 : 2795–803. [Google Scholar]
  41. Ebihara N, Matsuda A, Nakamura S, et al. Role of the IL-6 classic-and trans- signaling pathways in corneal sterile inflammation and wound healing. IOVS 2011 ; 52 : 8549–57. [Google Scholar]
  42. Funderburgh JL, Funderburgh ML, Mann MM, et al. Proteoglycan expression during transforming growth factor E-induced keratocyte-myofibroblast transdifferentiation. J Biol Chem 2001 ; 276 : 44173–8. [CrossRef] [PubMed] [Google Scholar]
  43. Du Y, SundarRaj N, Funderburgh ML, et al. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. IOVS 2007 ; 48 : 5038–45. [Google Scholar]
  44. Carrier P, Deschambeault A, Talbot M, et al. Characterization of wound reepithelialization using a new human tissue-engineered corneal wound healing model. IOVS 2008 ; 49 : 1376–85. [Google Scholar]
  45. Couture C, Zaniolo K, Carrier P, et al. The tissue-engineered human cornea as a model to study expression of matrix metalloproteinases during corneal wound healing. Biomaterials. 2016 ; 78 : 86–101. [CrossRef] [PubMed] [Google Scholar]
  46. Karamichos D, Guo XQ, Hutcheon AEK, Zieske JD. Human corneal fibrosis: an in vitro model. IOVS 2010 ; 51 : 1382–8. [Google Scholar]
  47. Jarczak D, Nierhaus A. Cytokine storm—definition, causes, and implications. Int J Mol Sci 2022 ; 23 : 11740. [CrossRef] [PubMed] [Google Scholar]
  48. Loiseau A, Raîche-Marcoux G, Maranda C, et al. Animal models in eye research: focus on corneal pathologies. Int J Mol Sci 2023 ; 24 : 16661. [CrossRef] [PubMed] [Google Scholar]
  49. Kamil S, Mohan RR. Corneal stromal wound healing: Major regulators and therapeutic targets. Ocul Surf. 2021 Jan;19:290–306. doi: 10.1016/j.jtos.2020.10.006. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.