Open Access
Numéro |
Med Sci (Paris)
Volume 41, Numéro 4, Avril 2025
|
|
---|---|---|
Page(s) | 336 - 345 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2025048 | |
Publié en ligne | 28 avril 2025 |
- Guérin A, Moncada-Vélez M, Jackson K, et al. Helper T cell immunity in humans with inherited CD4 deficiency. J Exp Med 2024 ; 221 : e20231044. [CrossRef] [PubMed] [Google Scholar]
- Mora T, Walczak AM. How many different clonotypes do immune repertoires contain? Curr Op Syst Biol 2019 ; 18 : 104–10. [CrossRef] [Google Scholar]
- He X, He X, Dave VP, et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 2005 ; 433 : 826–33. [CrossRef] [PubMed] [Google Scholar]
- Egawa T, Littman DR. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nat Immunol 2008 ; 9 : 1131–9. [CrossRef] [PubMed] [Google Scholar]
- Shinzawa M, Moseman EA, Gossa S, et al. Reversal of the T cell immune system reveals the molecular basis for T cell lineage fate determination in the thymus. Nat Immunol 2022 ; 23 : 731–42. [CrossRef] [PubMed] [Google Scholar]
- Grusby MJ, Johnson RS, Papaioannou VE, et al. Depletion of CD4+ T cells in major histocompatibility complex class II-deficient mice. Science 1991 ; 253 : 1417–20. [CrossRef] [PubMed] [Google Scholar]
- Steimle V, Otten LA, Zufferey M, et al. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 1993 ; 75 : 135–46. [CrossRef] [PubMed] [Google Scholar]
- Moon JJ, Chu HH, Pepper M, et al. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 2007 ; 27 : 203–13. [CrossRef] [PubMed] [Google Scholar]
- Obst R, Santen H-M van, Mathis D, et al. Antigen persistence is required throughout the expansion phase of a CD4(+) T cell response. J Exp Med 2005 ; 201 : 1555–65. [CrossRef] [PubMed] [Google Scholar]
- Wang J, Meijers R, Xiong Y, et al. Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc Natl Acad Sci USA 2001 ; 98 : 10799–804. [CrossRef] [PubMed] [Google Scholar]
- Veillette A, Bookman MA, Horak EM, et al. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 1988 ; 55 : 301–8. [CrossRef] [PubMed] [Google Scholar]
- Mørch AM, Bálint Š, Santos AM, et al. Coreceptors and TCR Signaling – the Strong and the Weak of It. Front. Cell Dev. Biol. 2020 ; 8. [Google Scholar]
- Horkova V, Drobek A, Paprckova D, et al. Unique roles of co-receptor-bound LCK in helper and cytotoxic T cells. Nat Immunol 2023 ; 24 : 174–85. [CrossRef] [PubMed] [Google Scholar]
- Irvine DJ, Purbhoo MA, Krogsgaard M, et al. Direct observation of ligand recognition by T cells. Nature 2002 ; 419 : 845–9. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jong R de, Altare F, Haagen IA, et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 1998 ; 280 : 1435–8. [CrossRef] [PubMed] [Google Scholar]
- Altare F, Casanova J-L. IL-12 et IFN-γ : un axe clé de l’immunité anti- mycobactérienne chez l’homme. Med Sci (Paris) 2001 ; 17 : 1112–9. [CrossRef] [EDP Sciences] [Google Scholar]
- Seder RA, Paul WE, Davis MM, et al. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med 1992 ; 176 : 1091–8. [CrossRef] [PubMed] [Google Scholar]
- Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997 ; 89 : 587–96. [CrossRef] [PubMed] [Google Scholar]
- Gauchat JF, Lebman DA, Coffman RL, et al. Structure and expression of germline epsilon transcripts in human B cells induced by interleukin 4 to switch to IgE production. J Exp Med 1990 ; 172 : 463–73. [CrossRef] [PubMed] [Google Scholar]
- Punnonen J, Aversa G, Cocks BG, et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA 1993 ; 90 : 3730–4. [CrossRef] [PubMed] [Google Scholar]
- Mitre E, Klion AD. Eosinophils and helminth infection: protective or pathogenic? Semin Immunopathol 2021 ; 43 : 363–81. [CrossRef] [PubMed] [Google Scholar]
- Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006 ; 126 : 1121–33. [CrossRef] [PubMed] [Google Scholar]
- Schnell A, Littman DR, Kuchroo VK. TH17 cell heterogeneity and its role in tissue inflammation. Nat Immunol 2023 ; 24 : 19–29. [CrossRef] [PubMed] [Google Scholar]
- Downs-Canner S, Berkey S, Delgoffe GM, et al. Suppressive IL-17A+Foxp3+ and ex-Th17 IL-17AnegFoxp3+ Treg cells are a source of tumour-associated Treg cells. Nat Commun 2017 ; 8 : 14649. [CrossRef] [PubMed] [Google Scholar]
- Ling Y, Cypowyj S, Aytekin C, et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med 2015 ; 212 : 619–31. [CrossRef] [PubMed] [Google Scholar]
- Vegran F, Martin F, Apetoh L, et al. Les lymphocytes Th9 - Une nouvelle population de lymphocytes T auxiliaires dans la lutte contre le cancer. Med Sci (Paris) 2016 ; 32 : 387–93. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Zheng Y, Valdez PA, Danilenko DM, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008 ; 14 : 282–9. [CrossRef] [PubMed] [Google Scholar]
- Ahrends T, Busselaar J, Severson TM, et al. CD4+ T cell help creates memory CD8+ T cells with innate and help-independent recall capacities. Nat Commun 2019 ; 10 : 5531. [CrossRef] [PubMed] [Google Scholar]
- Castellino F, Huang AY, Altan-Bonnet G, et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 2006 ; 440 : 890–5. [CrossRef] [PubMed] [Google Scholar]
- Bennett SR, Carbone FR, Karamalis F, et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998 ; 393 : 478–80. [CrossRef] [PubMed] [Google Scholar]
- Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998 ; 393 : 474–8. [CrossRef] [PubMed] [Google Scholar]
- Alpan O, Bachelder E, Isil E, et al. “Educated” dendritic cells act as messengers from memory to naive T helper cells. Nat Immunol 2004 ; 5 : 615–22. [CrossRef] [PubMed] [Google Scholar]
- Breitfeld D, Ohl L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 2000 ; 192 : 1545–52. [CrossRef] [PubMed] [Google Scholar]
- DiSanto JP, Bonnefoy JY, Gauchat JF, et al. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature 1993 ; 361 : 541–3. [CrossRef] [PubMed] [Google Scholar]
- Leclair L, Depil S. Les lymphocytes T CD4+ jouent un rôle majeur dans la réponse immunitaire antitumorale. Med Sci (Paris) 2021 ; 37 : 671–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Sledzinska A, Vila de Mucha M, Bergerhoff K, et al. Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4+ T Cells. Immunity 2020 ; 52 : 151–66. e6. [CrossRef] [PubMed] [Google Scholar]
- Bawden EG, Wagner T, Schröder J, et al. CD4+ T cell immunity against cutaneous melanoma encompasses multifaceted MHC II-dependent responses. Sci Immunol 2024 ; 9 : eadi9517. [CrossRef] [PubMed] [Google Scholar]
- Perez-Diez A, Joncker NT, Choi K, et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 2007 ; 109 : 5346–54. [CrossRef] [PubMed] [Google Scholar]
- Quezada SA, Simpson TR, Peggs KS, et al. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 2010 ; 207 : 637–50. [CrossRef] [PubMed] [Google Scholar]
- Verma S, Weiskopf D, Gupta A, et al. Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J Virol 2015 ; 90 : 650–8. [Google Scholar]
- Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003 ; 4 : 330–6. [CrossRef] [PubMed] [Google Scholar]
- Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024 ; 21 : 337–53. [CrossRef] [PubMed] [Google Scholar]
- Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001 ; 27 : 20–1. [CrossRef] [PubMed] [Google Scholar]
- Kanamori M, Nakatsukasa H, Okada M, et al. Induced Regulatory T Cells: Their Development, Stability, and Applications. Trends Immunol 2016 ; 37 : 803–11. [CrossRef] [PubMed] [Google Scholar]
- Groux H, O’Garra A, Bigler M, et al. A CD4+ T-cell subset inhibits antigen- specific T-cell responses and prevents colitis. Nature 1997 ; 389 : 737–42. [CrossRef] [PubMed] [Google Scholar]
- Freeborn RA, Strubbe S, Roncarolo MG. Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2022 ; 13 : 1032575. [CrossRef] [PubMed] [Google Scholar]
- Bonnal RJP, Rossetti G, Lugli E, et al. Clonally expanded EOMES+ Tr1-like cells in primary and metastatic tumors are associated with disease progression. Nat Immunol 2021 ; 22 : 735–45. [CrossRef] [PubMed] [Google Scholar]
- Sultan H, Takeuchi Y, Ward JP, et al. Neoantigen-specific cytotoxic Tr1 CD4 T cells suppress cancer immunotherapy. Nature 2024 ; 632 : 182–91. [CrossRef] [PubMed] [Google Scholar]
- Laethem FV, Saba I, Tikhonova AN, et al. Rôle crucial des corécepteurs CD4 et CD8 dans la reconnaissance antigénique des lymphocytes TDE. Med Sci (Paris) 2014 ; 30 : 511–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Almeida CF, Gully BS, Jones CM, et al. Direct recognition of an intact foreign protein by an αβ T cell receptor. Nat Commun 2024 ; 15 : 8816. [CrossRef] [PubMed] [Google Scholar]
- Scott-Browne JP, White J, Kappler JW, et al. Germline-encoded amino acids in the DE T-cell receptor control thymic selection. Nature 2009 ; 458 : 1043–6. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.