Open Access
Issue
Med Sci (Paris)
Volume 40, Number 10, Octobre 2024
Page(s) 748 - 756
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024109
Published online 25 October 2024
  1. Tamura R, Toda M. Historic Overview of Genetic Engineering Technologies for Human Gene Therapy. Neurol Med Chir (Tokyo) 2020 ; 60 : 483–91. [CrossRef] [PubMed] [Google Scholar]
  2. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010 ; 11 : 636–46. [CrossRef] [PubMed] [Google Scholar]
  3. Sun N, Zhao H. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioeng 2013 ; 110 : 1811–21. [CrossRef] [PubMed] [Google Scholar]
  4. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 2014 ; 23 : R40–6. [CrossRef] [PubMed] [Google Scholar]
  5. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014 ; 32 : 347–55. [CrossRef] [PubMed] [Google Scholar]
  6. Wu X, Kriz AJ, Sharp PA. Target specificity of the CRISPR-Cas9 system. Quant Biol 2014 ; 2 : 59–70. [CrossRef] [PubMed] [Google Scholar]
  7. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012 ; 337 : 816–21. [CrossRef] [PubMed] [Google Scholar]
  8. Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017 ; 551 : 464–71. [CrossRef] [PubMed] [Google Scholar]
  9. Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019 ; 576 : 149–57. [CrossRef] [PubMed] [Google Scholar]
  10. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020 ; 38 : 824–44. [CrossRef] [PubMed] [Google Scholar]
  11. Godbout K, Tremblay JP. Prime Editing for Human Gene Therapy: Where Are We Now? Cells 2023 ; 12 : 536. [CrossRef] [PubMed] [Google Scholar]
  12. Schene IF, Joore IP, Oka R, et al. Prime editing for functional repair in patient-derived disease models. Nat Commun 2020 ; 11 : 5352. [CrossRef] [PubMed] [Google Scholar]
  13. Geurts MH, de Poel E, Pleguezuelos-Manzano C, et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci Alliance 2021 ; 4 : e202000940. [CrossRef] [PubMed] [Google Scholar]
  14. Hou Y, Ureña-Bailén G, Mohammadian Gol T, et al. Challenges in Gene Therapy for Somatic Reverted Mosaicism in X-Linked Combined Immunodeficiency by CRISPR/Cas9 and Prime Editing. Genes (Basel) 2022 ; 13 : 2348. [CrossRef] [PubMed] [Google Scholar]
  15. Petri K, Zhang W, Ma J, et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nat Biotechnol 2022 ; 40 : 189–93. [CrossRef] [PubMed] [Google Scholar]
  16. Abuhamad AY, Mohamad Zamberi NN, Sheen L, et al. Reverting TP53 Mutation in Breast Cancer Cells: Prime Editing Workflow and Technical Considerations. Cells 2022 ; 11 : 1612. [CrossRef] [PubMed] [Google Scholar]
  17. Binder S, Ramachandran H, Hildebrandt B, Dobner J, Rossi A. Prime-Editing of human ACTB in induced pluripotent stem cells to model human ACTB Loss-of-Function diseases and compensatory mechanisms. Stem Cell Res 2024 ; 75 : 103304. [CrossRef] [PubMed] [Google Scholar]
  18. Lin J, Liu X, Lu Z, et al. Modeling a cataract disorder in mice with prime editing. Mol Ther Nucleic Acids 2021 ; 25 : 494–501. [CrossRef] [PubMed] [Google Scholar]
  19. Qian Y, Zhao D, Sui T, et al. Efficient and precise generation of Tay-Sachs disease model in rabbit by prime editing system. Cell Discov 2021 ; 7 : 50. [CrossRef] [PubMed] [Google Scholar]
  20. Frisch A, Colombo R, Michaelovsky E, et al. Origin and spread of the 1278 insTATC mutation causing Tay-Sachs disease in Ashkenazi Jews: genetic drift as a robust and parsimonious hypothesis. Hum Genet 2004 ; 114 : 366–76. [CrossRef] [PubMed] [Google Scholar]
  21. Salem AR, Bryant WB, Doja J, et al. Prime editing in mice with an engineered pegRNA. Vascul Pharmacol 2024 ; 154 : 107269. [CrossRef] [PubMed] [Google Scholar]
  22. Bijker LE, Uyttebroeck S, Hauser B, Vandenplas Y, Huysentruyt K. Variants in DGAT1 causing enteropathy: a case report and review of the literature. Belgian Journal of Paediatrics 2021 ; 23 : 275–9. [Google Scholar]
  23. Lopes Costa B, Sousa AA, Tsai YT, et al. Development of a Prime Editing Strategy to Treat Mutations in the Crumbs Homologue 1 (CRB1) Gene. Investigative Ophthalmology & Visual Science 2023 ; 64 : 3862. [Google Scholar]
  24. Jang H, Jo DH, Cho CS, et al. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nat Biomed Eng 2022 ; 6 : 181–94. [Google Scholar]
  25. Happi Mbakam C, Rousseau J, Lu Y, et al. Prime editing optimized RTT permits the correction of the c.8713C>T mutation in DMD gene. Mol Ther Nucleic Acids 2022 ; 30 : 272–85. [CrossRef] [PubMed] [Google Scholar]
  26. Happi Mbakam C, Rousseau J, Tremblay G, Yameogo P, Tremblay JP. Prime Editing Permits the Introduction of Specific Mutations in the Gene Responsible for Duchenne Muscular Dystrophy. Int J Mol Sci 2022 ; 23 : 6160. [CrossRef] [PubMed] [Google Scholar]
  27. Zhao X, Qu K, Curci B, et al. Comparison of In-Frame Deletion, Homology-Directed Repair, and Prime Editing-Based Correction of Duchenne Muscular Dystrophy Mutations. Biomolecules 2023 ; 13 : 870. [CrossRef] [PubMed] [Google Scholar]
  28. Godbout K, Rousseau J, Tremblay JP. Successful Correction by Prime Editing of a Mutation in the RYR1 Gene Responsible for a Myopathy. Cells 2023 ; 13 : 31. [CrossRef] [PubMed] [Google Scholar]
  29. Peterkova L, Racková M, Svaton M, et al. P754: prime editing as a novel tool for precise correction of causal mutations in fanconi anaemia group a patient-derived cells. Hemasphere 2023 ; 7 : e27248b5. [CrossRef] [Google Scholar]
  30. Heath JM, Orenstein JS, Tedeschi JG, et al. Prime Editing Efficiently and Precisely Corrects Causative Mutation in Chronic Granulomatous Disease, Restoring Myeloid Function: Toward Development of a Prime Edited Autologous Hematopoietic Stem Cell Therapy. Blood 2023 ; 142 : 7129. [CrossRef] [Google Scholar]
  31. Shao C, Liu Q, Xu J, et al. Prime Editing of the a-Thalassemia Hb Constant Spring Mutation. Blood 2023 ; 142 : 5001. [CrossRef] [Google Scholar]
  32. Xia K, Wang F, Tan Z, et al. Precise Correction of Lhcgr Mutation in Stem Leydig Cells by Prime Editing Rescues Hereditary Primary Hypogonadism in Mice. Adv Sci (Weinh) 2023 ; 10 : e2300993. [CrossRef] [PubMed] [Google Scholar]
  33. Jang G, Shin HR, Do HS, et al. Therapeutic gene correction for Lesch-Nyhan syndrome using CRISPR-mediated base and prime editing. Mol Ther Nucleic Acids 2023 ; 31 : 586–95. [CrossRef] [PubMed] [Google Scholar]
  34. Cao BR, Huang YM, Tian FY, et al. Prime editing-based gene correction alleviates the hyperexcitable phenotype and seizures of a genetic epilepsy mouse model. Acta Pharmacol Sin 2023 ; 44 : 2342–5. [CrossRef] [PubMed] [Google Scholar]
  35. de Serres FJ, Blanco I, Fernández-Bustillo E. Health implications of alpha1-antitrypsin deficiency in Sub-Sahara African countries and their emigrants in Europe and the New World. Genet Med 2005 ; 7 : 175–84. [CrossRef] [PubMed] [Google Scholar]
  36. Habib O, Habib G, Hwang GH, Bae S. Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Res 2022 ; 50 : 1187–97. [CrossRef] [PubMed] [Google Scholar]
  37. Liu P, Liang SQ, Zheng C, et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat Commun 2021 ; 12 : 2121. [CrossRef] [PubMed] [Google Scholar]
  38. Böck D, Rothgangl T, Villiger L, et al. In vivo prime editing of a metabolic liver disease in mice. Sci Transl Med 2022 ; 14 : eabl9238. [CrossRef] [PubMed] [Google Scholar]
  39. Brooks DL, Whittaker MN, Qu P, et al. Efficient in vivo prime editing corrects the most frequent phenylketonuria variant, associated with high unmet medical need. Am J Hum Genet 2023 ; 110 : 2003–14. [CrossRef] [PubMed] [Google Scholar]
  40. Wilkinson PD, Delgado ER, Alencastro F, et al. The Polyploid State Restricts Hepatocyte Proliferation and Liver Regeneration in Mice. Hepatology 2019 ; 69 : 1242–58. [CrossRef] [PubMed] [Google Scholar]
  41. Kim Y, Hong SA, Yu J, et al. Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease. Cell Stem Cell 2021 ; 28 : 1614–24.e5. [CrossRef] [PubMed] [Google Scholar]
  42. Jiang T, Zhang XO, Weng Z, Xue W. Deletion and replacement of long genomic sequences using prime editing. Nat Biotechnol 2022 ; 40 : 227–34. [CrossRef] [PubMed] [Google Scholar]
  43. An M, Raguram A, Du SW, et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol 2024 : 10.1038/s41587-023-02078-y. [PubMed] [Google Scholar]
  44. Hong SA, Kim SE, Lee AY, et al. Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Mol Ther 2022 ; 30 : 2664–2679. [CrossRef] [PubMed] [Google Scholar]
  45. Kern JS, Loeckermann S, Fritsch A, et al. Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity. Mol Ther 2009 ; 17 : 1605–15. [CrossRef] [PubMed] [Google Scholar]
  46. Everette KA, Newby GA, Levine RM, et al. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat Biomed Eng 2023 ; 7 : 616–28. [CrossRef] [PubMed] [Google Scholar]
  47. Chen Z, Kelly K, Cheng H, et al. In Vivo Prime Editing by Lipid Nanoparticle Co-Delivery of Chemically Modified pegRNA and Prime Editor mRNA. GEN Biotechnology 2023 ; 2 : 490–502. [CrossRef] [Google Scholar]
  48. Davis JR, Banskota S, Levy JM, et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat Biotechnol 2024 Feb;42(2):253–64. [CrossRef] [PubMed] [Google Scholar]
  49. Li M, Zhong A, Wu Y, et al. Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells. Nat Commun 2022 ; 13 : 6354. [CrossRef] [PubMed] [Google Scholar]
  50. Jordan B. CRISPR : le Nobel, enfin… Med Sci (Paris) 2021 ; 37 : 77–80. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.