Open Access

This article has an erratum: [https://doi.org/10.1051/medsci/2024207]


Issue
Med Sci (Paris)
Volume 40, Number 10, Octobre 2024
Page(s) 737 - 747
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024116
Published online 25 October 2024
  1. Guzman MG, Gubler DJ, Izquierdo A, et al. Dengue infection. Nat Rev Dis Primers. 2016 ; 2 : 16055. [CrossRef] [PubMed] [Google Scholar]
  2. Balmaseda A, Hammond SN, Perez L, et al. Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg 2006 ; 74 : 449–56. [CrossRef] [PubMed] [Google Scholar]
  3. WHO. Dengue - global situation. https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON498. [Google Scholar]
  4. Messina JP, Brady OJ, Scott TW, et al. Global spread of dengue virus types : mapping the 70 year history. Trends Microbiol 2014 ; 22 : 138–46. [CrossRef] [PubMed] [Google Scholar]
  5. Marques-Toledo CA, Bendati MM, Codeco CT, et al. Probability of dengue transmission and propagation in a non-endemic temperate area : conceptual model and decision risk levels for early alert, prevention and control. Parasit Vectors 2019 ; 12 : 38. [CrossRef] [PubMed] [Google Scholar]
  6. European Centre for Disease Prevention and Control. Dengue cases January-December 2023. https://www.ecdc.europa.eu/en/publications-data/dengue-cases-january-december-2023. [Google Scholar]
  7. Zatta M, Brichler S, Vindrios W, et al. Autochthonous dengue outbreak, Paris region, France, September-October 2023. Emerg Infect Dis 2023 ; 29 : 2538–40. [CrossRef] [PubMed] [Google Scholar]
  8. Ministère du Travail de la Santé et des Solidarités. Cartes de présence du moustique tigre (Aedes albopictus) en France métropolitaine. https://sante.gouv.fr/sante-et-environnement/risques-microbiologiques-physiques-et-chimiques/especes-nuisibles-et-parasites/article/cartes-de-presence-du-moustique-tigre-aedes-albopictus-en-france-metropolitaine. [Google Scholar]
  9. Santé Publique France. Point Epidémiologique Régional : Guyane. Dengue, 14 mars 2024. https://www.guyane.ars.sante.fr/media/121729/download?inline#:~:text=DENGUE-,14%20mars%202024,en%20S09%20(Figure%201).&text=Les%20s%C3%A9rotypes%20DEN%2D3%20et,DEN%2D3%20identifi%C3%A9s%20en%20S10. [Google Scholar]
  10. Santé Publique France. Point Epidémiologique Régional : La Réunion. Dengue, 25 janvier 2024. pe_reunion_20240125(5).pdf. [Google Scholar]
  11. MesVaccines. Polynésie française : alerte à la dengue à Tahiti et Moorea. https://www.mesvaccins.net/web/news/21687-polynesie-francaise-alerte-a-la-dengue-a-tahiti-et-moorea. [Google Scholar]
  12. Paz-Bailey G, Adams LE, Deen J, et al. Dengue. Lancet 2024 ; 403 : 667–82. [CrossRef] [PubMed] [Google Scholar]
  13. Bournazos S, Gupta A, Ravetch JV. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol 2020 ; 20 : 633–43. [CrossRef] [PubMed] [Google Scholar]
  14. Sarker A, Dhama N, Gupta RD. Dengue virus neutralizing antibody : a review of targets, cross-reactivity, and antibody-dependent enhancement. Front Immunol. 2023 ; 14 : 1200195. [CrossRef] [PubMed] [Google Scholar]
  15. Prommalikit P and Thisyakom U. Dengue virus virulence and disease severity. Southeast Asian J Trop Med Public Health 2015 ; 46 : 35–42 [PubMed] [Google Scholar]
  16. Inizan C, Miier M, Prot M, et al. Viral evolution sustains a dengue outbreak of enhanced severity. Emerg. Microbes Infect 2021 ; 10 : 536–44 [CrossRef] [Google Scholar]
  17. Lebeau G, Lagrave A, Ogire E, et al. Viral toxin NS1 implication in dengue pathogenesis making it a pivotal role target in development of efficient vaccine. Vaccines 2021 ; 9 : 946 [CrossRef] [PubMed] [Google Scholar]
  18. Ogire E, Diaz O, Vidalain O, et al. Instability of the NS1 glycoprotein from La Reunion 2018 dengue 2 virus (Cosmopolitan-1 genotype) in Huh7 cells is due to lysine residues on positions 272 and 324. Int J Mol Sci 2021 ; 22 : 1951. [CrossRef] [PubMed] [Google Scholar]
  19. Coffey LL, Mertens E, Brehin AC, et al. Human genetic determinants of dengue virus susceptibility. Microbes Infection 2009 ; 11 : 143–56. [CrossRef] [Google Scholar]
  20. Pare G, Neupane B, Eskandarian S, et al. Genetic risk for dengue hemorragic fever and dengue fever in multiple ancestors. EBioMed 51 ; 2020 : 102584. [CrossRef] [Google Scholar]
  21. Oliveira M, Lert-itthipporn W, Cavadas chakit K. Joint ancestry and association test indicate two distinct pathogenic pathways involved in classical dengue fever and dengue shock syndrome. PLoS Negl. Trop. Dis. 2018 ; 12 : e0006202. [CrossRef] [Google Scholar]
  22. Sharp TM, Anderson KB, Katzelnick LC, et al. Knowledge gaps in the epidemiology of severe dengue impede vaccine evaluation. Lancet Infect Dis 2022 ; 22 : e42–51. [CrossRef] [PubMed] [Google Scholar]
  23. Helgers LC, Keijzer NCH, van Hamme JL, et al. Dengue virus infects human skin Langerhans cells through langerin for dissemination to dendritic cells. J Invest Dermatol 2023 ; 144(5) : 1099–111. [Google Scholar]
  24. Wu SJ, Grouard-Vogel G, Sun W, et al. Human skin Langerhans cells are targets of dengue virus infection. Nat Med 2000 ; 6 : 816–20. [CrossRef] [PubMed] [Google Scholar]
  25. Fernandes-Santos C, Azeredo EL. Innate immune response to dengue virus : toll-like receptors and antiviral response. Viruses 2022 ; 14 : 992. [CrossRef] [PubMed] [Google Scholar]
  26. Ooi EE, Kalimuddin S. Insights into dengue immunity from vaccine trials. Sci Transl Med 2023 ; 15 : eadh3067. [CrossRef] [PubMed] [Google Scholar]
  27. Clapham HE, Rodriguez-Barraquer I, Azman AS, et al. Dengue virus (DENV) neutralizing antibody kinetics in children after symptomatic primary and postprimary DENV infection. J Infect Dis 2016 ; 213 : 1428–35. [CrossRef] [PubMed] [Google Scholar]
  28. Montoya M, Gresh L, Mercado JC, et al. Symptomatic versus inapparent outcome in repeat dengue virus infections is influenced by the time interval between infections and study year. PLoS Negl Trop Dis 2013 ; 7 : e2357. [CrossRef] [PubMed] [Google Scholar]
  29. Wilder-Smith A, Ooi EE, Horstick O, et al. Dengue. Lancet 2019 ; 393 : 350–63. [CrossRef] [PubMed] [Google Scholar]
  30. Modhiran N, Kalayanarooj S, Ubol S. Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies : TLRs signaling collapse. PLoS Negl Trop Dis 2010 ; 4 : e924. [CrossRef] [PubMed] [Google Scholar]
  31. Waggoner JJ, Katzelnick LC, Burger-Calderon R, et al. Antibody-dependent enhancement of severe disease is mediated by serum viral load in pediatric dengue virus infections. J Infect Dis 2020 ; 221 : 1846–54. [CrossRef] [PubMed] [Google Scholar]
  32. Tian Y, Grifoni A, Sette A, et al. Human T cell response to dengue virus infection. Front Immunol 2019 ; 10 : 2125. [CrossRef] [PubMed] [Google Scholar]
  33. Rivino L, Kumaran EA, Thein TL, et al. Virus-specific T lymphocytes home to the skin during natural dengue infection. Sci Transl Med 2015 ; 7 : 278ra35. [CrossRef] [PubMed] [Google Scholar]
  34. Weiskopf D, Bangs DJ, Sidney J, et al. Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proc Nat Acad Sci USA 2015 ; 112 : E4256–63. [CrossRef] [PubMed] [Google Scholar]
  35. Thai KT, Nishiura H, Hoang PL, et al. Age-specificity of clinical dengue during primary and secondary infections. PLoS Negl Trop Dis 2011 ; 5 : e1180. [CrossRef] [PubMed] [Google Scholar]
  36. Simon-Loriere E, Duong V, Tawfik A, et al. Increased adaptive immune responses and proper feedback regulation protect against clinical dengue. Sci Transl Med 2017 ; 9 : eaal5088. [CrossRef] [PubMed] [Google Scholar]
  37. Buddhari D, Aldstadt J, Endy TP, et al. Dengue virus neutralizing antibody levels associated with protection from infection in Thai cluster studies. PLoS Negl Trop Dis 2014 ; 8 : e3230. [CrossRef] [PubMed] [Google Scholar]
  38. Katzelnick LC, Montoya M, Gresh L, et al. Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort. Proc Nat Acad Sci USA 2016 ; 113 : 728–33. [CrossRef] [PubMed] [Google Scholar]
  39. Bos S, Graber AL, Cardona-Ospina JA, et al. Protection against symptomatic dengue infection by neutralizing antibodies varies by infection history and infecting serotype. Nat Commun 2024 ; 15 : 382. [CrossRef] [PubMed] [Google Scholar]
  40. Dias AG, Jr., Atyeo C, Loos C, et al. Antibody Fc characteristics and effector functions correlate with protection from symptomatic dengue virus type 3 infection. Sci Transl Med 2022 ; 14 : eabm3151. [CrossRef] [PubMed] [Google Scholar]
  41. Goethals O, Kaptein SJF, Kesteleyn B, et al. Blocking NS3-NS4B interaction inhibits dengue virus in non-human primates. Nature 2023 ; 615 : 678–86. [CrossRef] [PubMed] [Google Scholar]
  42. Tien SM, Chang PC, Lai YC, et al. Therapeutic efficacy of humanized monoclonal antibodies targeting dengue virus nonstructural protein 1 in the mouse model. PLoS Pathog 2022 ; 18 : e1010469. [CrossRef] [PubMed] [Google Scholar]
  43. Martinez DR, Metz SW, Baric RS. Dengue vaccines : the promise and pitfalls of antibody-mediated protection. Cell Host Microbe 2021 ; 29 : P13–22. [CrossRef] [PubMed] [Google Scholar]
  44. Capeding MR, Tran NH, Hadinegoro SR, et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia : a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 2014 Jul 10 ; 384 : 1358–65. [CrossRef] [PubMed] [Google Scholar]
  45. Biswal S, Reynales H, Saez-Llorens X, et al. Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. New Engl J Med 2019 ; 381 : 2009–19. [CrossRef] [PubMed] [Google Scholar]
  46. Shukla R, Ramasamy V, Shanmugam RK, et al. Antibody-dependent enhancement : a challenge for developing a safe dengue vaccine. Front Cell Infect Microbiol 2020 ; 10 : 572681. [CrossRef] [PubMed] [Google Scholar]
  47. Huang CY, Butrapet S, Tsuchiya KR, et al. Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development. J Virol 2003; 77 : 11436–47. [CrossRef] [PubMed] [Google Scholar]
  48. Lopez-Medina E, Biswal S, Saez-Llorens X, et al. Efficacy of a dengue vaccine candidate (TAK-003) in healthy children and adolescents two years after vaccination. J Infect Dis 2022 ; 225(9) : 1521–32. [CrossRef] [PubMed] [Google Scholar]
  49. Tricou V, Yu D, Reynales H, et al. Long-term efficacy and safety of a tetravalent dengue vaccine (TAK-003) : 4.5-year results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Glob Health 2024 ; 12 : e257–70. [CrossRef] [PubMed] [Google Scholar]
  50. Freedman DO. A new dengue vaccine (TAK-003) now WHO recommended in endemic areas ; what about travellers? J Travel Med 2023 ; 30 : taad132. [CrossRef] [PubMed] [Google Scholar]
  51. Alves L. Brazil to start widespread dengue vaccinations. Lancet 2024 ; 403 : 133. [CrossRef] [PubMed] [Google Scholar]
  52. Alvarez DE, De Lella Ezcurra AL, Fucito S, et al. Role of RNA structures present at the 3’UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 2005 ; 339 : 200–12. [CrossRef] [Google Scholar]
  53. Kallas EG, Cintra MAT, Moreira JA, et al. Live, attenuated, tetravalent Butantan-dengue vaccine in children and adults. New Engl J Med 2024 ; 390 : 397–408. [CrossRef] [PubMed] [Google Scholar]
  54. Weiskopf D, Cerpas C, Angelo MA, et al. Human CD8+ T-cell responses against the 4 dengue virus serotypes are associated with distinct patterns of protein targets. J Infect Dis 2015 ; 212 : 1743–51. [CrossRef] [PubMed] [Google Scholar]
  55. Haute Autorité de Santé. Recommandation vaccinale contre la dengue 2023. https://www.has-sante.fr/upload/docs/application/pdf/2023-09/recommandation_vaccinale_contre_la_dengue_note_de_cadrage.pdf. [Google Scholar]
  56. Haute Autorité de Santé. Argumentaire. Stratégie de vaccination contre la dengue Place du vaccin Qdenga https://www.hassante.fr/upload/docs/application/pdf/2024-07/recommandation_vaccinale_strategie_vaccination_vaccin_qdenga_version_consultation_publique.pdf. [Google Scholar]
  57. Reveillaud J, Bordenstein SR, Cruaud C, et al. The Wolbachia mobilome in Culex pipiens includes a putative plasmid. Nat Commun 2019 ; 10 : 1051. [CrossRef] [PubMed] [Google Scholar]
  58. European Centre for Disease Prevention and Control. Aedes albopictus - current known distribution : February 2023. https://www.ecdc.europa.eu/en/publications-data/aedes-albopictus-current-known-distribution-february-2023. [Google Scholar]
  59. Vincent M, Paty MC, Gerardin P, et al. From dengue outbreaks to endemicity : Reunion Island, France, 2018 to 2021. Euro Surveill 2023 ; 28 : 2200769. [CrossRef] [PubMed] [Google Scholar]
  60. Santé Publique France. Dengue à la Réunion Point épidémiologique régionel : https://www.santepubliquefrance.fr/regions/ocean-indien/documents/bulletin-regional/2022/surveillance-de-la-dengue-a-la-reunion.-bilan-2022 [Google Scholar]
  61. Gutiérrez LA. Pan American Health Organization / World Health Organization. PAHO/WHO Data - México-Dengue Serotypes | PAHO/WHO : https://www3.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-subnacional-en/548-mex-egi-serotipos-en.html [Google Scholar]
  62. Prakash O, Verma AK, Paliwal A, et al. Circulating serotypes andgenotypes of dengue virus in North India : An observational study. Journal of Vector Borne Diseases 2024 ; 61 : 117. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.