Issue
Med Sci (Paris)
Volume 40, Number 10, Octobre 2024
Les microbes, l’Anthropocène et nous
Page(s) 757 - 765
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024121
Published online 25 October 2024
  1. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002 ; 347 : 911–20. [CrossRef] [PubMed] [Google Scholar]
  2. Blaser MJ. Missing microbes : how the overuse of antibiotics is fueling our modern plagues. New York : Henry Holt and Company, 2014 : 273 p. [Google Scholar]
  3. Anwar H, Iftikhar A, Muzaffar H, et al. Biodiversity of Gut Microbiota: Impact of Various Host and Environmental Factors. Biomed Res Int 2021 ; 2021 : 5575245. [CrossRef] [PubMed] [Google Scholar]
  4. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med 2016 ; 8 : 51. [CrossRef] [PubMed] [Google Scholar]
  5. Rinninella E, Raoul P, Cintoni M, et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019 ; 7. [Google Scholar]
  6. Costea PI, Hildebrand F, Arumugam M, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol 2018 ; 3 : 8–16. [Google Scholar]
  7. Tap J, Lejzerowicz F, Cotillard A, et al. Global branches and local states of the human gut microbiome define associations with environmental and intrinsic factors. Nat Commun 2023 ; 14 : 3310. [CrossRef] [PubMed] [Google Scholar]
  8. Wu G, Zhao N, Zhang C, et al. Guild-based analysis for understanding gut microbiome in human health and diseases. Genome Med 2021 ; 13 : 22. [CrossRef] [PubMed] [Google Scholar]
  9. Amato KR, Jeyakumar T, Poinar H, Gros P. Shifting Climates, Foods, and Diseases: The Human Microbiome through Evolution. Bioessays 2019 ; 41 : e1900034. [CrossRef] [PubMed] [Google Scholar]
  10. Sanders JG, Sprockett DD, Li Y, et al. Widespread extinctions of co-diversified primate gut bacterial symbionts from humans. Nat Microbiol 2023 ; 8 : 1039–50. [CrossRef] [PubMed] [Google Scholar]
  11. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012 ; 486 : 222–7. [CrossRef] [PubMed] [Google Scholar]
  12. Clemente JC, Pehrsson EC, Blaser MJ, et al. The microbiome of uncontacted Amerindians. Sci Adv 2015 ; 1 : e1500183. [CrossRef] [PubMed] [Google Scholar]
  13. Marechal V, Maday Y, Wallet C, et al. Wastewater-based epidemiology: Retrospective, current status, and future prospects. Anaesth Crit Care Pain Med 2023 ; 42 : 101251. [CrossRef] [PubMed] [Google Scholar]
  14. Luhung I, Uchida A, Lim SBY, et al. Experimental parameters defining ultra-low biomass bioaerosol analysis. NPJ Biofilms Microbiomes 2021 ; 7 : 37. [CrossRef] [PubMed] [Google Scholar]
  15. Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018 ; 555 : 623–8. [CrossRef] [PubMed] [Google Scholar]
  16. Wilkinson JL, Boxal ABA, Kolpin DW. A Novel Method to Characterise Levels of Pharmaceutical Pollution in Large-Scale Aquatic Monitoring Campaigns. Appl Sci 2019 ; 9. [Google Scholar]
  17. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008 ; 105 : 16731–6. [CrossRef] [PubMed] [Google Scholar]
  18. Cani PD, Depommier C, Derrien M, et al. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 2022 ; 19 : 625–37. [CrossRef] [PubMed] [Google Scholar]
  19. Caballero-Flores G, Pickard JM, Nunez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol 2023 ; 21 : 347–60. [CrossRef] [PubMed] [Google Scholar]
  20. Crobach MJT, Vernon JJ, Loo VG, et al. Understanding Clostridium difficile Colonization. Clin Microbiol Rev 2018 ; 31. [Google Scholar]
  21. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009 ; 31 : 677–89. [CrossRef] [PubMed] [Google Scholar]
  22. Stepankova R, Powrie F, Kofronova O, et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells. Inflamm Bowel Dis 2007 ; 13 : 1202–11. [CrossRef] [PubMed] [Google Scholar]
  23. Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease. Clin Microbiol Rev 2019 ; 32. [Google Scholar]
  24. De Rycke J, Milon A, Oswald E. Necrotoxic Escherichia coli (NTEC): two emerging categories of human and animal pathogens. Vet Res 1999 ; 30 : 221–33. [PubMed] [Google Scholar]
  25. Valguarnera E, Wardenburg JB. Good Gone Bad: One Toxin Away From Disease for Bacteroides fragilis. J Mol Biol 2020 ; 432 : 765–85. [CrossRef] [PubMed] [Google Scholar]
  26. Pasquereau-Kotula E, Martins M, Aymeric L, Dramsi S. Significance of Streptococcus gallolyticus subsp. gallolyticus Association With Colorectal Cancer. Front Microbiol 2018 ; 9 : 614. [CrossRef] [PubMed] [Google Scholar]
  27. Dinakaran V, Mandape SN, Shuba K, et al. Identification of Specific Oral and Gut Pathogens in Full Thickness Colon of Colitis Patients: Implications for Colon Motility. Front Microbiol 2018 ; 9 : 3220. [Google Scholar]
  28. Koliarakis I, Messaritakis I, Nikolouzakis TK, et al. Oral Bacteria and Intestinal Dysbiosis in Colorectal Cancer. Int J Mol Sci 2019 ; 20. [PubMed] [Google Scholar]
  29. Rubinstein MR, Baik JE, Lagana SM, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/beta-catenin modulator Annexin A1. EMBO Rep 2019 ; 20. [Google Scholar]
  30. Flynn KJ, Baxter NT, Schloss PD. Metabolic and Community Synergy of Oral Bacteria in Colorectal Cancer. mSphere 2016 ; 1. [Google Scholar]
  31. Araujo JR, Tazi A, Burlen-Defranoux O, et al. Fermentation Products of Commensal Bacteria Alter Enterocyte Lipid Metabolism. Cell Host Microbe 2020 ; 27 : 358–75 e7. [CrossRef] [PubMed] [Google Scholar]
  32. Bergsten E, Mestivier D, Donnadieu F, et al. Parvimonas micra, an oral pathobiont associated with colorectal cancer, epigenetically reprograms human colonocytes. Gut Microbes 2023 ; 15 : 2265138. [CrossRef] [PubMed] [Google Scholar]
  33. [Die Atiologie der Tuberculose. Facsimile of the original contribution by Robert Koch in “Berliner Klinische Wochenschrift” 10 April 1882. Fortschr Med 1982 ; 100 : 539. [PubMed] [Google Scholar]
  34. Vonaesch P, Anderson M, Sansonetti PJ. Pathogens, microbiome and the host: emergence of the ecological Koch’s postulates. FEMS Microbiol Rev 2018 ; 42 : 273–92. [CrossRef] [PubMed] [Google Scholar]
  35. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006 ; 444 : 1027–31. [CrossRef] [PubMed] [Google Scholar]
  36. Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 2021 ; 320 : C375–C91. [CrossRef] [PubMed] [Google Scholar]
  37. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021 ; 19 : 55–71. [CrossRef] [PubMed] [Google Scholar]
  38. Al-Asmakh M, Zadjali F. Use of Germ-Free Animal Models in Microbiota-Related Research. J Microbiol Biotechnol 2015 ; 25 : 1583–8. [CrossRef] [PubMed] [Google Scholar]
  39. Parkin K, Christophersen CT, Verhasselt V, et al. Risk Factors for Gut Dysbiosis in Early Life. Microorganisms 2021 ; 9. [PubMed] [Google Scholar]
  40. Aversa Z, Atkinson EJ, Schafer MJ, et al. Association of Infant Antibiotic Exposure With Childhood Health Outcomes. Mayo Clin Proc 2021 ; 96 : 66–77. [CrossRef] [PubMed] [Google Scholar]
  41. Renz H, Skevaki C. Early life microbial exposures and allergy risks: opportunities for prevention. Nat Rev Immunol 2021 ; 21 : 177–91. [CrossRef] [PubMed] [Google Scholar]
  42. McDonnell L, Gilkes A, Ashworth M, et al. Association between antibiotics and gut microbiome dysbiosis in children: systematic review and meta-analysis. Gut Microbes 2021 ; 13 : 1–18. [CrossRef] [PubMed] [Google Scholar]
  43. Scott FI, Horton DB, Mamtani R, et al. Administration of Antibiotics to Children Before Age 2 Years Increases Risk for Childhood Obesity. Gastroenterology 2016 ; 151 : 120–9 e5. [CrossRef] [PubMed] [Google Scholar]
  44. Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014 ; 158 : 705–21. [CrossRef] [PubMed] [Google Scholar]
  45. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010 ; 107 : 11971–5. [CrossRef] [PubMed] [Google Scholar]
  46. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 2016 ; 22 : 250–3. [CrossRef] [PubMed] [Google Scholar]
  47. Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 2015 ; 7 : 307ra152. [CrossRef] [PubMed] [Google Scholar]
  48. Gebrayel P, Nicco C, Al Khodor S, et al. Microbiota medicine: towards clinical revolution. J Transl Med 2022 ; 20 : 111. [CrossRef] [PubMed] [Google Scholar]
  49. Korpela K, de Vos WM. Infant gut microbiota restoration: state of the art. Gut Microbes 2022 ; 14 : 2118811. [CrossRef] [PubMed] [Google Scholar]
  50. Korpela K, Helve O, Kolho KL, et al. Maternal Fecal Microbiota Transplantation in Cesarean-Born Infants Rapidly Restores Normal Gut Microbial Development: A Proof-of-Concept Study. Cell 2020 ; 183 : 324–34 e5. [CrossRef] [PubMed] [Google Scholar]
  51. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013 ; 368 : 407–15. [Google Scholar]
  52. Hanssen NMJ, de Vos WM, Nieuwdorp M. Fecal microbiota transplantation in human metabolic diseases: From a murky past to a bright future? Cell Metab 2021 ; 33 : 1098–110. [CrossRef] [PubMed] [Google Scholar]
  53. Vrieze A et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012 ; 143 :913–916 [CrossRef] [PubMed] [Google Scholar]
  54. Sokol H, Landman C, Seksik P, et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 2020 ; 8 : 12. [CrossRef] [PubMed] [Google Scholar]
  55. Doré J, Ortega Ugalde S. Human-microbes symbiosis in health and disease, on earth and beyond planetary boundaries. Frontiers in Astronomy and Space Sciences 2023 ; 10. [Google Scholar]
  56. Malard F, Dore J, Gaugler B, Mohty M. Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol 2021 ; 14 : 547–54. [CrossRef] [PubMed] [Google Scholar]
  57. van de Guchte M, Blottiere HM, Dore J. Humans as holobionts: implications for prevention and therapy. Microbiome 2018 ; 6 : 81. [CrossRef] [PubMed] [Google Scholar]
  58. Van de Guchte M, Burz SD, Cadiou J, et al. Alternative stable states in the intestinal ecosystem: proof of concept in a rat model and a perspective of therapeutic implications. Microbiome 2020 ; 8 : 153. [CrossRef] [PubMed] [Google Scholar]
  59. van de Guchte M, Mondot S, Dore J. Dynamic Properties of the Intestinal Ecosystem Call for Combination Therapies, Targeting Inflammation and Microbiota, in Ulcerative Colitis. Gastroenterology 2021 ; 161 : 1969–81 e12. [CrossRef] [PubMed] [Google Scholar]
  60. Faucher P, Dries A, Mousset PY, et al. Synergistic effects of Lacticaseibacillus rhamnosus GG, glutamine, and curcumin on chronic unpredictable mild stress-induced depression in a mouse model. Benef Microbes 2022 ; 13 : 253–64. [CrossRef] [PubMed] [Google Scholar]
  61. Mangin I, Bonnet R, Seksik P, et al. Molecular inventory of faecal microflora in patients with Crohn’s disease. FEMS Microbiol Ecol 2004 ; 50 : 25–36. [CrossRef] [PubMed] [Google Scholar]
  62. Lepage P, Hasler R, Spehlmann ME, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 2011 ; 141 : 227–36. [CrossRef] [PubMed] [Google Scholar]
  63. Hartstra AV, Bouter KE, Backhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 2015 ; 38 : 159–65. [CrossRef] [PubMed] [Google Scholar]
  64. Burcelin R, Serino M, Chabo C, et al. Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol 2011 ; 48 : 257–73. [CrossRef] [PubMed] [Google Scholar]
  65. Aron-Wisnewsky J, Gaborit B, Dutour A, Clement K. Gut microbiota and non-alcoholic fatty liver disease: new insights. Clin Microbiol Infect 2013 ; 19 : 338–48. [CrossRef] [PubMed] [Google Scholar]
  66. Giongo A, Gano KA, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 2011 ; 5 : 82–91. [CrossRef] [PubMed] [Google Scholar]
  67. Nadal I, Donant E, Ribes-Koninckx C, et al. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 2007 ; 56 : 1669–74. [CrossRef] [PubMed] [Google Scholar]
  68. Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011 ; 6 : e16393. [CrossRef] [PubMed] [Google Scholar]
  69. Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 2012 ; 129 : 434–40, 40 e1-2. [CrossRef] [PubMed] [Google Scholar]
  70. Finegold SM, Molitoris D, Song Y, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 2002 ; 35 : S6–S16. [CrossRef] [PubMed] [Google Scholar]
  71. Cersosimo MG, Raina GB, Pecci C, et al. Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J Neurol 2013 ; 260 : 1332–8. [CrossRef] [PubMed] [Google Scholar]
  72. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011 ; 472 : 57–63. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.