Open Access
Numéro |
Med Sci (Paris)
Volume 40, Numéro 10, Octobre 2024
Les microbes, l’Anthropocène et nous
|
|
---|---|---|
Page(s) | 757 - 765 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024121 | |
Publié en ligne | 25 octobre 2024 |
- Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002 ; 347 : 911–20. [CrossRef] [PubMed] [Google Scholar]
- Blaser MJ. Missing microbes : how the overuse of antibiotics is fueling our modern plagues. New York : Henry Holt and Company, 2014 : 273 p. [Google Scholar]
- Anwar H, Iftikhar A, Muzaffar H, et al. Biodiversity of Gut Microbiota: Impact of Various Host and Environmental Factors. Biomed Res Int 2021 ; 2021 : 5575245. [CrossRef] [PubMed] [Google Scholar]
- Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med 2016 ; 8 : 51. [CrossRef] [PubMed] [Google Scholar]
- Rinninella E, Raoul P, Cintoni M, et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019 ; 7. [Google Scholar]
- Costea PI, Hildebrand F, Arumugam M, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol 2018 ; 3 : 8–16. [Google Scholar]
- Tap J, Lejzerowicz F, Cotillard A, et al. Global branches and local states of the human gut microbiome define associations with environmental and intrinsic factors. Nat Commun 2023 ; 14 : 3310. [CrossRef] [PubMed] [Google Scholar]
- Wu G, Zhao N, Zhang C, et al. Guild-based analysis for understanding gut microbiome in human health and diseases. Genome Med 2021 ; 13 : 22. [CrossRef] [PubMed] [Google Scholar]
- Amato KR, Jeyakumar T, Poinar H, Gros P. Shifting Climates, Foods, and Diseases: The Human Microbiome through Evolution. Bioessays 2019 ; 41 : e1900034. [CrossRef] [PubMed] [Google Scholar]
- Sanders JG, Sprockett DD, Li Y, et al. Widespread extinctions of co-diversified primate gut bacterial symbionts from humans. Nat Microbiol 2023 ; 8 : 1039–50. [CrossRef] [PubMed] [Google Scholar]
- Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012 ; 486 : 222–7. [CrossRef] [PubMed] [Google Scholar]
- Clemente JC, Pehrsson EC, Blaser MJ, et al. The microbiome of uncontacted Amerindians. Sci Adv 2015 ; 1 : e1500183. [CrossRef] [PubMed] [Google Scholar]
- Marechal V, Maday Y, Wallet C, et al. Wastewater-based epidemiology: Retrospective, current status, and future prospects. Anaesth Crit Care Pain Med 2023 ; 42 : 101251. [CrossRef] [PubMed] [Google Scholar]
- Luhung I, Uchida A, Lim SBY, et al. Experimental parameters defining ultra-low biomass bioaerosol analysis. NPJ Biofilms Microbiomes 2021 ; 7 : 37. [CrossRef] [PubMed] [Google Scholar]
- Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018 ; 555 : 623–8. [CrossRef] [PubMed] [Google Scholar]
- Wilkinson JL, Boxal ABA, Kolpin DW. A Novel Method to Characterise Levels of Pharmaceutical Pollution in Large-Scale Aquatic Monitoring Campaigns. Appl Sci 2019 ; 9. [Google Scholar]
- Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008 ; 105 : 16731–6. [CrossRef] [PubMed] [Google Scholar]
- Cani PD, Depommier C, Derrien M, et al. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 2022 ; 19 : 625–37. [CrossRef] [PubMed] [Google Scholar]
- Caballero-Flores G, Pickard JM, Nunez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol 2023 ; 21 : 347–60. [CrossRef] [PubMed] [Google Scholar]
- Crobach MJT, Vernon JJ, Loo VG, et al. Understanding Clostridium difficile Colonization. Clin Microbiol Rev 2018 ; 31. [Google Scholar]
- Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009 ; 31 : 677–89. [CrossRef] [PubMed] [Google Scholar]
- Stepankova R, Powrie F, Kofronova O, et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells. Inflamm Bowel Dis 2007 ; 13 : 1202–11. [CrossRef] [PubMed] [Google Scholar]
- Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease. Clin Microbiol Rev 2019 ; 32. [Google Scholar]
- De Rycke J, Milon A, Oswald E. Necrotoxic Escherichia coli (NTEC): two emerging categories of human and animal pathogens. Vet Res 1999 ; 30 : 221–33. [PubMed] [Google Scholar]
- Valguarnera E, Wardenburg JB. Good Gone Bad: One Toxin Away From Disease for Bacteroides fragilis. J Mol Biol 2020 ; 432 : 765–85. [CrossRef] [PubMed] [Google Scholar]
- Pasquereau-Kotula E, Martins M, Aymeric L, Dramsi S. Significance of Streptococcus gallolyticus subsp. gallolyticus Association With Colorectal Cancer. Front Microbiol 2018 ; 9 : 614. [CrossRef] [PubMed] [Google Scholar]
- Dinakaran V, Mandape SN, Shuba K, et al. Identification of Specific Oral and Gut Pathogens in Full Thickness Colon of Colitis Patients: Implications for Colon Motility. Front Microbiol 2018 ; 9 : 3220. [Google Scholar]
- Koliarakis I, Messaritakis I, Nikolouzakis TK, et al. Oral Bacteria and Intestinal Dysbiosis in Colorectal Cancer. Int J Mol Sci 2019 ; 20. [PubMed] [Google Scholar]
- Rubinstein MR, Baik JE, Lagana SM, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/beta-catenin modulator Annexin A1. EMBO Rep 2019 ; 20. [Google Scholar]
- Flynn KJ, Baxter NT, Schloss PD. Metabolic and Community Synergy of Oral Bacteria in Colorectal Cancer. mSphere 2016 ; 1. [Google Scholar]
- Araujo JR, Tazi A, Burlen-Defranoux O, et al. Fermentation Products of Commensal Bacteria Alter Enterocyte Lipid Metabolism. Cell Host Microbe 2020 ; 27 : 358–75 e7. [CrossRef] [PubMed] [Google Scholar]
- Bergsten E, Mestivier D, Donnadieu F, et al. Parvimonas micra, an oral pathobiont associated with colorectal cancer, epigenetically reprograms human colonocytes. Gut Microbes 2023 ; 15 : 2265138. [CrossRef] [PubMed] [Google Scholar]
- [Die Atiologie der Tuberculose. Facsimile of the original contribution by Robert Koch in “Berliner Klinische Wochenschrift” 10 April 1882. Fortschr Med 1982 ; 100 : 539. [PubMed] [Google Scholar]
- Vonaesch P, Anderson M, Sansonetti PJ. Pathogens, microbiome and the host: emergence of the ecological Koch’s postulates. FEMS Microbiol Rev 2018 ; 42 : 273–92. [CrossRef] [PubMed] [Google Scholar]
- Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006 ; 444 : 1027–31. [CrossRef] [PubMed] [Google Scholar]
- Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 2021 ; 320 : C375–C91. [CrossRef] [PubMed] [Google Scholar]
- Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021 ; 19 : 55–71. [CrossRef] [PubMed] [Google Scholar]
- Al-Asmakh M, Zadjali F. Use of Germ-Free Animal Models in Microbiota-Related Research. J Microbiol Biotechnol 2015 ; 25 : 1583–8. [CrossRef] [PubMed] [Google Scholar]
- Parkin K, Christophersen CT, Verhasselt V, et al. Risk Factors for Gut Dysbiosis in Early Life. Microorganisms 2021 ; 9. [PubMed] [Google Scholar]
- Aversa Z, Atkinson EJ, Schafer MJ, et al. Association of Infant Antibiotic Exposure With Childhood Health Outcomes. Mayo Clin Proc 2021 ; 96 : 66–77. [CrossRef] [PubMed] [Google Scholar]
- Renz H, Skevaki C. Early life microbial exposures and allergy risks: opportunities for prevention. Nat Rev Immunol 2021 ; 21 : 177–91. [CrossRef] [PubMed] [Google Scholar]
- McDonnell L, Gilkes A, Ashworth M, et al. Association between antibiotics and gut microbiome dysbiosis in children: systematic review and meta-analysis. Gut Microbes 2021 ; 13 : 1–18. [CrossRef] [PubMed] [Google Scholar]
- Scott FI, Horton DB, Mamtani R, et al. Administration of Antibiotics to Children Before Age 2 Years Increases Risk for Childhood Obesity. Gastroenterology 2016 ; 151 : 120–9 e5. [CrossRef] [PubMed] [Google Scholar]
- Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014 ; 158 : 705–21. [CrossRef] [PubMed] [Google Scholar]
- Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010 ; 107 : 11971–5. [CrossRef] [PubMed] [Google Scholar]
- Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 2016 ; 22 : 250–3. [CrossRef] [PubMed] [Google Scholar]
- Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 2015 ; 7 : 307ra152. [CrossRef] [PubMed] [Google Scholar]
- Gebrayel P, Nicco C, Al Khodor S, et al. Microbiota medicine: towards clinical revolution. J Transl Med 2022 ; 20 : 111. [CrossRef] [PubMed] [Google Scholar]
- Korpela K, de Vos WM. Infant gut microbiota restoration: state of the art. Gut Microbes 2022 ; 14 : 2118811. [CrossRef] [PubMed] [Google Scholar]
- Korpela K, Helve O, Kolho KL, et al. Maternal Fecal Microbiota Transplantation in Cesarean-Born Infants Rapidly Restores Normal Gut Microbial Development: A Proof-of-Concept Study. Cell 2020 ; 183 : 324–34 e5. [CrossRef] [PubMed] [Google Scholar]
- van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013 ; 368 : 407–15. [Google Scholar]
- Hanssen NMJ, de Vos WM, Nieuwdorp M. Fecal microbiota transplantation in human metabolic diseases: From a murky past to a bright future? Cell Metab 2021 ; 33 : 1098–110. [CrossRef] [PubMed] [Google Scholar]
- Vrieze A et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012 ; 143 :913–916 [CrossRef] [PubMed] [Google Scholar]
- Sokol H, Landman C, Seksik P, et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 2020 ; 8 : 12. [CrossRef] [PubMed] [Google Scholar]
- Doré J, Ortega Ugalde S. Human-microbes symbiosis in health and disease, on earth and beyond planetary boundaries. Frontiers in Astronomy and Space Sciences 2023 ; 10. [Google Scholar]
- Malard F, Dore J, Gaugler B, Mohty M. Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol 2021 ; 14 : 547–54. [CrossRef] [PubMed] [Google Scholar]
- van de Guchte M, Blottiere HM, Dore J. Humans as holobionts: implications for prevention and therapy. Microbiome 2018 ; 6 : 81. [CrossRef] [PubMed] [Google Scholar]
- Van de Guchte M, Burz SD, Cadiou J, et al. Alternative stable states in the intestinal ecosystem: proof of concept in a rat model and a perspective of therapeutic implications. Microbiome 2020 ; 8 : 153. [CrossRef] [PubMed] [Google Scholar]
- van de Guchte M, Mondot S, Dore J. Dynamic Properties of the Intestinal Ecosystem Call for Combination Therapies, Targeting Inflammation and Microbiota, in Ulcerative Colitis. Gastroenterology 2021 ; 161 : 1969–81 e12. [CrossRef] [PubMed] [Google Scholar]
- Faucher P, Dries A, Mousset PY, et al. Synergistic effects of Lacticaseibacillus rhamnosus GG, glutamine, and curcumin on chronic unpredictable mild stress-induced depression in a mouse model. Benef Microbes 2022 ; 13 : 253–64. [CrossRef] [PubMed] [Google Scholar]
- Mangin I, Bonnet R, Seksik P, et al. Molecular inventory of faecal microflora in patients with Crohn’s disease. FEMS Microbiol Ecol 2004 ; 50 : 25–36. [CrossRef] [PubMed] [Google Scholar]
- Lepage P, Hasler R, Spehlmann ME, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 2011 ; 141 : 227–36. [CrossRef] [PubMed] [Google Scholar]
- Hartstra AV, Bouter KE, Backhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 2015 ; 38 : 159–65. [CrossRef] [PubMed] [Google Scholar]
- Burcelin R, Serino M, Chabo C, et al. Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol 2011 ; 48 : 257–73. [CrossRef] [PubMed] [Google Scholar]
- Aron-Wisnewsky J, Gaborit B, Dutour A, Clement K. Gut microbiota and non-alcoholic fatty liver disease: new insights. Clin Microbiol Infect 2013 ; 19 : 338–48. [CrossRef] [PubMed] [Google Scholar]
- Giongo A, Gano KA, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 2011 ; 5 : 82–91. [CrossRef] [PubMed] [Google Scholar]
- Nadal I, Donant E, Ribes-Koninckx C, et al. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 2007 ; 56 : 1669–74. [CrossRef] [PubMed] [Google Scholar]
- Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011 ; 6 : e16393. [CrossRef] [PubMed] [Google Scholar]
- Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 2012 ; 129 : 434–40, 40 e1-2. [CrossRef] [PubMed] [Google Scholar]
- Finegold SM, Molitoris D, Song Y, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 2002 ; 35 : S6–S16. [CrossRef] [PubMed] [Google Scholar]
- Cersosimo MG, Raina GB, Pecci C, et al. Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J Neurol 2013 ; 260 : 1332–8. [CrossRef] [PubMed] [Google Scholar]
- Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011 ; 472 : 57–63. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.