Open Access
Issue
Med Sci (Paris)
Volume 40, Number 6-7, Juin-Juillet 2024
Page(s) 515 - 524
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024080
Published online 08 July 2024
  1. Cambi A, Chavrier P. Tissue remodeling by invadosomes. Fac Rev 2021; 10 : 39. [CrossRef] [PubMed] [Google Scholar]
  2. Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24 : 86–106. [CrossRef] [PubMed] [Google Scholar]
  3. PatersonEK, CourtneidgeSA. Invadosomes are coming : new insights into function and disease relevance. FEBS J 2017 ; 285 : 8–27. [Google Scholar]
  4. Lin SS, Su YA, Chuang MC, Liu YW. Probing invadosomes : technologies for the analysis of invadosomes. FEBS J 2022; 289 : 5 850–63. [Google Scholar]
  5. Jasnin M, Hervy J, Balor S, et al. Elasticity of podosome actin networks produces nanonewton protrusive forces. Nat Commun 2022; 13 : 3 842. [CrossRef] [Google Scholar]
  6. FerrariR, MartinG, TagitO, et al. MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion. Nat Commun 2019 ; 10 : 4 886. [CrossRef] [Google Scholar]
  7. Zagryazhskaya-Masson A, Monteiro P, Mace AS, et al. Intersection of TKS5 and FGD1/CDC42 signaling cascades directs the formation of invadopodia. J Cell Biol 2020; 219 : e20191013. [CrossRef] [Google Scholar]
  8. Thuault S, Mamelonet C, Salameh J, et al. A proximity-labeling proteomic approach to investigate invadopodia molecular landscape in breast cancer cells. Sci rep 2020; 10 : 6 787. [Google Scholar]
  9. EzzoukhryZ, HenrietE, CordelieresFP, et al. Combining laser capture microdissection and proteomics reveals an active translation machinery controlling invadosome formation. Nat Commun 2018 ; 9 : 2031. [CrossRef] [PubMed] [Google Scholar]
  10. Remy D, Mace AS, Chavrier P, Monteiro P. Invadopodia Methods : Detection of Invadopodia Formation and Activity in Cancer Cells Using Reconstituted 2D and 3D Collagen-Based Matrices. Methods Mol Biol 2023; 2608 : 225–46. [CrossRef] [PubMed] [Google Scholar]
  11. YamaguchiH, LorenzM, KempiakS, et al. Molecular mechanisms of invadopodium formation : the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 2005 ; 168 : 441–452. [CrossRef] [PubMed] [Google Scholar]
  12. DestaingO, PlanusE, BouvardD, et al. beta1A integrin is a master regulator of invadosome organization and function. Mol Biol Cell 2010 ; 21 : 4 108–119. [Google Scholar]
  13. AlonsoF, SpuulP, KramerI, GenotE. Variations sur le thème des podosomes, une affaire de contexte. Med Sci (Paris) 2018 ; 34 : 1 063–070. [Google Scholar]
  14. GenotE.. Les podosomes endothéliaux. Med Sci (Paris) 2009 ; 25 : 168–174. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  15. PanYR, ChenCL, ChenHC. FAK is required for the assembly of podosome rosettes. J Cell Biol 2011 ; 195 : 113–129. [CrossRef] [PubMed] [Google Scholar]
  16. ChellaiahMA, BiswasRS, YuenD, et al. Phosphatidylinositol 3,4,5-trisphosphate directs association of Src homology 2-containing signaling proteins with gelsolin. J Biol Chem 2001 ; 276 : 47 434–444. [Google Scholar]
  17. TatinF, VaronC, GenotE, MoreauV. A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester. J Cell Sci 2006 ; 119 : 769–781. [CrossRef] [PubMed] [Google Scholar]
  18. Hu F, Zhu D, Dong H, et al. Super-resolution microscopy reveals nanoscale architecture and regulation of podosome clusters in primary macrophages. iScience 2022; 25 : 105 514. [Google Scholar]
  19. Di MartinoJ, HenrietE, EzzoukhryZ, et al. The microenvironment controls invadosome plasticity. J Cell Sci 2016 ; 129 : 1 759–768. [Google Scholar]
  20. JuinA, BillottetC, MoreauV, et al. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes. Mol Biol Cell 2012 ; 23 : 297–309. [CrossRef] [PubMed] [Google Scholar]
  21. HoshinoD, BranchKM, WeaverAM. Signaling inputs to invadopodia and podosomes. J Cell Sci 2013 ; 126 : 2 979–989. [Google Scholar]
  22. NakamuraI, PilkingtonMF, LakkakorpiPT, et al. Role of alpha (v) beta (3) integrin in osteoclast migration and formation of the sealing zone. J Cell Sci 1999 ; 112 : 3 985–993. [Google Scholar]
  23. Beaty BT, Sharma VP, Bravo-Cordero JJ, et al. beta1 integrin regulates Arg to promote invadopodial maturation and matrix degradation. Mol Biol Cell 2013; 24 : 1 661–75, S1–11. [Google Scholar]
  24. GiffordV, ItohY. MT1-MMP-dependent cell migration : proteolytic and non-proteolytic mechanisms. Biochem Soc Trans 2019 ; 47 : 811–826. [CrossRef] [PubMed] [Google Scholar]
  25. MaderCC, OserM, MagalhaesMA, et al. An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res 2011 ; 71 : 1 730–741. [Google Scholar]
  26. CastagninoA, Castro-CastroA, IrondelleM, et al. Coronin 1C promotes triple-negative breast cancer invasiveness through regulation of MT1-MMP traffic and invadopodia function. Oncogene 2018 ; 37 : 6 425–441. [Google Scholar]
  27. SealsDF, AzucenaEF, Jr., PassI, et al. The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 2005 ; 7 : 155–165. [CrossRef] [PubMed] [Google Scholar]
  28. BuschmanMD, BromannPA, Cejudo-MartinP, et al. The Novel Adaptor Protein Tks4 (SH3PXD2B) Is Required for Functional Podosome Formation. Mol Biol Cell 2009 ; 20 : 1 302–311. [Google Scholar]
  29. StylliSS, StaceyTT, VerhagenAM, et al. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation. J Cell Sci 2009 ; 122 : 2 727–740. [Google Scholar]
  30. PanzerL, TrubeL, KloseM, et al. The formins FHOD1 and INF2 regulate inter- and intra-structural contractility of podosomes. J Cell Sci 2016 ; 129 : 298–313. [PubMed] [Google Scholar]
  31. BonnansC, ChouJ, WerbZ. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014 ; 15 : 786–801. [CrossRef] [PubMed] [Google Scholar]
  32. GoicoecheaSM, ZinnA, AwadiaSS, et al. A RhoG-mediated signaling pathway that modulates invadopodia dynamics in breast cancer cells. J Cell Sci 2017 ; 130 : 1 064–077. [Google Scholar]
  33. MoshfeghY, Bravo-CorderoJJ, MiskolciV, et al. A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol 2015 ; 17 : 350. [CrossRef] [PubMed] [Google Scholar]
  34. van den DriesK, MeddensMB, de KeijzerS, et al. Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nat Commun 2013 ; 4 : 1 412. [CrossRef] [Google Scholar]
  35. Monteiro P, Remy D, Lemerle E, et al. A mechanosensitive caveolae-invadosome interplay drives matrix remodelling for cancer cell invasion. Nat Cell Biol 2023; 25 : 1 787–803. [Google Scholar]
  36. AlexanderNR, BranchKM, ParekhA, et al. Extracellular matrix rigidity promotes invadopodia activity. Curr Biol 2008 ; 18 : 1 295–299. [Google Scholar]
  37. van den DriesK, NahidiazarL, SlotmanJA, et al. Modular actin nano-architecture enables podosome protrusion and mechanosensing. Nat Commun 2019 ; 10 : 5 171. [CrossRef] [Google Scholar]
  38. PourfarhangiKE, BergmanA, GligorijevicB. ECM Cross-Linking Regulates Invadopodia Dynamics. Biophys J 2018 ; 114 : 1 455–466. [Google Scholar]
  39. Iizuka S, Leon RP, Gribbin KP, et al. Crosstalk between invadopodia and the extracellular matrix. Eur J Cell Biol 2020; 99 : 151 122. [Google Scholar]
  40. InfanteE, CastagninoA, FerrariR, et al. LINC complex-Lis1 interplay controls MT1-MMP matrix digest-on-demand response for confined tumor cell migration. Nat Commun 2018 ; 9 : 2 443. [CrossRef] [Google Scholar]
  41. Nader GPF, Aguera-Gonzalez S, Routet F, et al. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell 2021; 184 : 5 230–46. [Google Scholar]
  42. BouissouA, ProagA, BourgN, et al. Podosome Force Generation Machinery : A Local Balance between Protrusion at the Core and Traction at the Ring. ACS nano 2017 ; 11 : 4 028–040. [Google Scholar]
  43. MassaadMJ, RameshN, GehaRS. Wiskott-Aldrich syndrome : a comprehensive review. Ann N Y Acad Sci 2013 ; 1 : 285 26–43. [Google Scholar]
  44. LinderS, NelsonD, WeissM, AepfelbacherM. Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc Natl Acad Sci U S A 1999 ; 96 : 9 648–653. [Google Scholar]
  45. CharrierS, StockholmD, SeyeK, et al. A lentiviral vector encoding the human Wiskott-Aldrich syndrome protein corrects immune and cytoskeletal defects in WASP knockout mice. Gene Ther 2005 ; 12 : 597–606. [CrossRef] [PubMed] [Google Scholar]
  46. IqbalZ, Cejudo-MartinP, de BrouwerA, et al. Disruption of the podosome adaptor protein TKS4 (SH3PXD2B) causes the skeletal dysplasia, eye, and cardiac abnormalities of Frank-Ter Haar Syndrome. Am J Hum Genet 2010 ; 86 : 254–261. [CrossRef] [PubMed] [Google Scholar]
  47. MurphyDA, DiazB, BromannPA, et al. A Src-Tks5 pathway is required for neural crest cell migration during embryonic development. PLoS One 2011 ; 6 : e22499. [Google Scholar]
  48. BergmanA, CondeelisJS, GligorijevicBInvadopodia in context. Cell Adh Migr 2014 ; 8 : 273–279. [CrossRef] [PubMed] [Google Scholar]
  49. ChenYC, BaikM, ByersJT, et al. TKS5-positive invadopodia-like structures in human tumor surgical specimens. Exp Mol Pathol 2019 ; 106 : 17–26. [CrossRef] [PubMed] [Google Scholar]
  50. Mitre GP, Balbinot KM, Ribeiro ALR, et al. Key proteins of invadopodia are overexpressed in oral squamous cell carcinoma suggesting an important role of MT1-MMP in the tumoral progression. Diagn Pathol 2021; 16 : 33. [CrossRef] [PubMed] [Google Scholar]
  51. KohrmannA, KammererU, KappM, et al. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines : New findings and review of the literature. BMC Cancer 2009 ; 9 : 188. [CrossRef] [PubMed] [Google Scholar]
  52. PazH, PathakN, YangJ. Invading one step at a time : the role of invadopodia in tumor metastasis. Oncogene 2014 ; 33 : 4 193–202. [Google Scholar]
  53. LodillinskyC, InfanteE, GuichardA, et al. p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene 2016 ; 35 : 344–357. [CrossRef] [PubMed] [Google Scholar]
  54. SeanoG, ChiaverinaG, GagliardiPA, et al. Endothelial podosome rosettes regulate vascular branching in tumour angiogenesis. Nat Cell Biol 2014 ; 16 : 931–41 1–8. [Google Scholar]
  55. Chan ZC, Kwan HR, Wong YS, et al. Site-directed MT1-MMP trafficking and surface insertion regulate AChR clustering and remodeling at developing NMJs. Elife 2020; 9. [Google Scholar]
  56. Lin SS, Hsieh TL, Liou GG, et al. Dynamin-2 Regulates Postsynaptic Cytoskeleton Organization and Neuromuscular Junction Development. Cell Rep 2020; 33 : 108 310. [Google Scholar]
  57. BaranovM, Ter BeestM, Reinieren-BeerenI, et al. Podosomes of dendritic cells facilitate antigen sampling. J Cell Sci 2014 ; 127 : 1 052–064. [Google Scholar]
  58. ChenYC, BaikM, ByersJT, et al. Experimental supporting data on TKS5 and Cortactin expression and localization in human pancreatic cancer cells and tumors. Data Brief 2019 ; 22 : 132–136. [CrossRef] [PubMed] [Google Scholar]
  59. Quintavalle M, Elia L, Price JH, et al. A cell-based high-content screening assay reveals activators and inhibitors of cancer cell invasion. Sci Signal 2011; 4 : ra49. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.