Open Access
Numéro |
Med Sci (Paris)
Volume 40, Numéro 6-7, Juin-Juillet 2024
|
|
---|---|---|
Page(s) | 515 - 524 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024080 | |
Publié en ligne | 8 juillet 2024 |
- Cambi A, Chavrier P. Tissue remodeling by invadosomes. Fac Rev 2021; 10 : 39. [CrossRef] [PubMed] [Google Scholar]
- Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24 : 86–106. [CrossRef] [PubMed] [Google Scholar]
- PatersonEK, CourtneidgeSA. Invadosomes are coming : new insights into function and disease relevance. FEBS J 2017 ; 285 : 8–27. [Google Scholar]
- Lin SS, Su YA, Chuang MC, Liu YW. Probing invadosomes : technologies for the analysis of invadosomes. FEBS J 2022; 289 : 5 850–63. [Google Scholar]
- Jasnin M, Hervy J, Balor S, et al. Elasticity of podosome actin networks produces nanonewton protrusive forces. Nat Commun 2022; 13 : 3 842. [CrossRef] [Google Scholar]
- FerrariR, MartinG, TagitO, et al. MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion. Nat Commun 2019 ; 10 : 4 886. [CrossRef] [Google Scholar]
- Zagryazhskaya-Masson A, Monteiro P, Mace AS, et al. Intersection of TKS5 and FGD1/CDC42 signaling cascades directs the formation of invadopodia. J Cell Biol 2020; 219 : e20191013. [CrossRef] [Google Scholar]
- Thuault S, Mamelonet C, Salameh J, et al. A proximity-labeling proteomic approach to investigate invadopodia molecular landscape in breast cancer cells. Sci rep 2020; 10 : 6 787. [CrossRef] [Google Scholar]
- EzzoukhryZ, HenrietE, CordelieresFP, et al. Combining laser capture microdissection and proteomics reveals an active translation machinery controlling invadosome formation. Nat Commun 2018 ; 9 : 2031. [CrossRef] [PubMed] [Google Scholar]
- Remy D, Mace AS, Chavrier P, Monteiro P. Invadopodia Methods : Detection of Invadopodia Formation and Activity in Cancer Cells Using Reconstituted 2D and 3D Collagen-Based Matrices. Methods Mol Biol 2023; 2608 : 225–46. [CrossRef] [PubMed] [Google Scholar]
- YamaguchiH, LorenzM, KempiakS, et al. Molecular mechanisms of invadopodium formation : the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 2005 ; 168 : 441–452. [CrossRef] [PubMed] [Google Scholar]
- DestaingO, PlanusE, BouvardD, et al. beta1A integrin is a master regulator of invadosome organization and function. Mol Biol Cell 2010 ; 21 : 4 108–119. [Google Scholar]
- AlonsoF, SpuulP, KramerI, GenotE. Variations sur le thème des podosomes, une affaire de contexte. Med Sci (Paris) 2018 ; 34 : 1 063–070. [Google Scholar]
- GenotE.. Les podosomes endothéliaux. Med Sci (Paris) 2009 ; 25 : 168–174. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- PanYR, ChenCL, ChenHC. FAK is required for the assembly of podosome rosettes. J Cell Biol 2011 ; 195 : 113–129. [CrossRef] [PubMed] [Google Scholar]
- ChellaiahMA, BiswasRS, YuenD, et al. Phosphatidylinositol 3,4,5-trisphosphate directs association of Src homology 2-containing signaling proteins with gelsolin. J Biol Chem 2001 ; 276 : 47 434–444. [Google Scholar]
- TatinF, VaronC, GenotE, MoreauV. A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester. J Cell Sci 2006 ; 119 : 769–781. [CrossRef] [PubMed] [Google Scholar]
- Hu F, Zhu D, Dong H, et al. Super-resolution microscopy reveals nanoscale architecture and regulation of podosome clusters in primary macrophages. iScience 2022; 25 : 105 514. [Google Scholar]
- Di MartinoJ, HenrietE, EzzoukhryZ, et al. The microenvironment controls invadosome plasticity. J Cell Sci 2016 ; 129 : 1 759–768. [Google Scholar]
- JuinA, BillottetC, MoreauV, et al. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes. Mol Biol Cell 2012 ; 23 : 297–309. [CrossRef] [PubMed] [Google Scholar]
- HoshinoD, BranchKM, WeaverAM. Signaling inputs to invadopodia and podosomes. J Cell Sci 2013 ; 126 : 2 979–989. [Google Scholar]
- NakamuraI, PilkingtonMF, LakkakorpiPT, et al. Role of alpha (v) beta (3) integrin in osteoclast migration and formation of the sealing zone. J Cell Sci 1999 ; 112 : 3 985–993. [Google Scholar]
- Beaty BT, Sharma VP, Bravo-Cordero JJ, et al. beta1 integrin regulates Arg to promote invadopodial maturation and matrix degradation. Mol Biol Cell 2013; 24 : 1 661–75, S1–11. [Google Scholar]
- GiffordV, ItohY. MT1-MMP-dependent cell migration : proteolytic and non-proteolytic mechanisms. Biochem Soc Trans 2019 ; 47 : 811–826. [CrossRef] [PubMed] [Google Scholar]
- MaderCC, OserM, MagalhaesMA, et al. An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res 2011 ; 71 : 1 730–741. [Google Scholar]
- CastagninoA, Castro-CastroA, IrondelleM, et al. Coronin 1C promotes triple-negative breast cancer invasiveness through regulation of MT1-MMP traffic and invadopodia function. Oncogene 2018 ; 37 : 6 425–441. [Google Scholar]
- SealsDF, AzucenaEF, Jr., PassI, et al. The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 2005 ; 7 : 155–165. [CrossRef] [PubMed] [Google Scholar]
- BuschmanMD, BromannPA, Cejudo-MartinP, et al. The Novel Adaptor Protein Tks4 (SH3PXD2B) Is Required for Functional Podosome Formation. Mol Biol Cell 2009 ; 20 : 1 302–311. [Google Scholar]
- StylliSS, StaceyTT, VerhagenAM, et al. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation. J Cell Sci 2009 ; 122 : 2 727–740. [Google Scholar]
- PanzerL, TrubeL, KloseM, et al. The formins FHOD1 and INF2 regulate inter- and intra-structural contractility of podosomes. J Cell Sci 2016 ; 129 : 298–313. [PubMed] [Google Scholar]
- BonnansC, ChouJ, WerbZ. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014 ; 15 : 786–801. [CrossRef] [PubMed] [Google Scholar]
- GoicoecheaSM, ZinnA, AwadiaSS, et al. A RhoG-mediated signaling pathway that modulates invadopodia dynamics in breast cancer cells. J Cell Sci 2017 ; 130 : 1 064–077. [Google Scholar]
- MoshfeghY, Bravo-CorderoJJ, MiskolciV, et al. A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol 2015 ; 17 : 350. [CrossRef] [PubMed] [Google Scholar]
- van den DriesK, MeddensMB, de KeijzerS, et al. Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nat Commun 2013 ; 4 : 1 412. [CrossRef] [Google Scholar]
- Monteiro P, Remy D, Lemerle E, et al. A mechanosensitive caveolae-invadosome interplay drives matrix remodelling for cancer cell invasion. Nat Cell Biol 2023; 25 : 1 787–803. [Google Scholar]
- AlexanderNR, BranchKM, ParekhA, et al. Extracellular matrix rigidity promotes invadopodia activity. Curr Biol 2008 ; 18 : 1 295–299. [Google Scholar]
- van den DriesK, NahidiazarL, SlotmanJA, et al. Modular actin nano-architecture enables podosome protrusion and mechanosensing. Nat Commun 2019 ; 10 : 5 171. [CrossRef] [Google Scholar]
- PourfarhangiKE, BergmanA, GligorijevicB. ECM Cross-Linking Regulates Invadopodia Dynamics. Biophys J 2018 ; 114 : 1 455–466. [Google Scholar]
- Iizuka S, Leon RP, Gribbin KP, et al. Crosstalk between invadopodia and the extracellular matrix. Eur J Cell Biol 2020; 99 : 151 122. [Google Scholar]
- InfanteE, CastagninoA, FerrariR, et al. LINC complex-Lis1 interplay controls MT1-MMP matrix digest-on-demand response for confined tumor cell migration. Nat Commun 2018 ; 9 : 2 443. [CrossRef] [Google Scholar]
- Nader GPF, Aguera-Gonzalez S, Routet F, et al. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell 2021; 184 : 5 230–46. [Google Scholar]
- BouissouA, ProagA, BourgN, et al. Podosome Force Generation Machinery : A Local Balance between Protrusion at the Core and Traction at the Ring. ACS nano 2017 ; 11 : 4 028–040. [Google Scholar]
- MassaadMJ, RameshN, GehaRS. Wiskott-Aldrich syndrome : a comprehensive review. Ann N Y Acad Sci 2013 ; 1 : 285 26–43. [Google Scholar]
- LinderS, NelsonD, WeissM, AepfelbacherM. Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc Natl Acad Sci U S A 1999 ; 96 : 9 648–653. [Google Scholar]
- CharrierS, StockholmD, SeyeK, et al. A lentiviral vector encoding the human Wiskott-Aldrich syndrome protein corrects immune and cytoskeletal defects in WASP knockout mice. Gene Ther 2005 ; 12 : 597–606. [CrossRef] [PubMed] [Google Scholar]
- IqbalZ, Cejudo-MartinP, de BrouwerA, et al. Disruption of the podosome adaptor protein TKS4 (SH3PXD2B) causes the skeletal dysplasia, eye, and cardiac abnormalities of Frank-Ter Haar Syndrome. Am J Hum Genet 2010 ; 86 : 254–261. [CrossRef] [PubMed] [Google Scholar]
- MurphyDA, DiazB, BromannPA, et al. A Src-Tks5 pathway is required for neural crest cell migration during embryonic development. PLoS One 2011 ; 6 : e22499. [Google Scholar]
- BergmanA, CondeelisJS, GligorijevicBInvadopodia in context. Cell Adh Migr 2014 ; 8 : 273–279. [CrossRef] [PubMed] [Google Scholar]
- ChenYC, BaikM, ByersJT, et al. TKS5-positive invadopodia-like structures in human tumor surgical specimens. Exp Mol Pathol 2019 ; 106 : 17–26. [CrossRef] [PubMed] [Google Scholar]
- Mitre GP, Balbinot KM, Ribeiro ALR, et al. Key proteins of invadopodia are overexpressed in oral squamous cell carcinoma suggesting an important role of MT1-MMP in the tumoral progression. Diagn Pathol 2021; 16 : 33. [CrossRef] [PubMed] [Google Scholar]
- KohrmannA, KammererU, KappM, et al. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines : New findings and review of the literature. BMC Cancer 2009 ; 9 : 188. [CrossRef] [PubMed] [Google Scholar]
- PazH, PathakN, YangJ. Invading one step at a time : the role of invadopodia in tumor metastasis. Oncogene 2014 ; 33 : 4 193–202. [Google Scholar]
- LodillinskyC, InfanteE, GuichardA, et al. p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene 2016 ; 35 : 344–357. [CrossRef] [PubMed] [Google Scholar]
- SeanoG, ChiaverinaG, GagliardiPA, et al. Endothelial podosome rosettes regulate vascular branching in tumour angiogenesis. Nat Cell Biol 2014 ; 16 : 931–41 1–8. [Google Scholar]
- Chan ZC, Kwan HR, Wong YS, et al. Site-directed MT1-MMP trafficking and surface insertion regulate AChR clustering and remodeling at developing NMJs. Elife 2020; 9. [Google Scholar]
- Lin SS, Hsieh TL, Liou GG, et al. Dynamin-2 Regulates Postsynaptic Cytoskeleton Organization and Neuromuscular Junction Development. Cell Rep 2020; 33 : 108 310. [Google Scholar]
- BaranovM, Ter BeestM, Reinieren-BeerenI, et al. Podosomes of dendritic cells facilitate antigen sampling. J Cell Sci 2014 ; 127 : 1 052–064. [Google Scholar]
- ChenYC, BaikM, ByersJT, et al. Experimental supporting data on TKS5 and Cortactin expression and localization in human pancreatic cancer cells and tumors. Data Brief 2019 ; 22 : 132–136. [CrossRef] [PubMed] [Google Scholar]
- Quintavalle M, Elia L, Price JH, et al. A cell-based high-content screening assay reveals activators and inhibitors of cancer cell invasion. Sci Signal 2011; 4 : ra49. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.