Open Access
Med Sci (Paris)
Volume 40, Number 6-7, Juin-Juillet 2024
Page(s) 525 - 533
Section M/S Revues
Published online 08 July 2024
  1. Pitard B.. Nanotaxi® pour les vaccins ARN et ADN. Med Sci (Paris) 2019 ; 35 : 749–752. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Rohner E, Yang R, Foo KS, et al. Unlocking the promise of mRNA therapeutics. Nat Biotechnol 2022; 40 : 1 586–600. [Google Scholar]
  3. Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021; 178 : 113 834. [Google Scholar]
  4. Labs R, Beilvert F, Barteau B, et al. Nature as a source of inspiration for cationic lipid synthesis. Genetica 2010 ; 138 : 153–168. [CrossRef] [PubMed] [Google Scholar]
  5. Pitard B, Aguerre O, Airiau M, et al. Virus-sized self-assembling lamellar complexes between plasmid DNA and cationic micelles promote gene transfer. Proc Natl Acad Sci USA 1997 ; 94 : 14412–417. [CrossRef] [PubMed] [Google Scholar]
  6. Pitard B, Habrant D. Supramolecular Gene Transfection Agents. In: Jerry L. Atwood. Comprehensive Supramolecular Chemistry II. Amsterdam, Netherlands: Elsevier, 2017 : pp. 365–389. [CrossRef] [Google Scholar]
  7. Jones CH, Androsavich JR, So N, et al. Breaking the mod with RNA – a “RNaissance” of life science. NPJ Genom Med 2024; 9 : 2. [Google Scholar]
  8. Desigaux L, Sainlos M, Lambert O, et al. Self-assembled lamellar complexes of siRNA with lipidic aminoglycoside derivatives promote efficient siRNA delivery and interference. Proc Natl Acad Sci USA 2007 ; 104 : 16 534–539. [Google Scholar]
  9. Colombani T, Peuziat P, Dallet L, et al. Self-assembling complexes binary mixtures of lipids with different linkers and nucleic acids promote universal mRNA, DNA and siRNA delivery. J Control Release 2017 ; 249 : 131–142. [CrossRef] [PubMed] [Google Scholar]
  10. Habrant D, Peuziat P, Colombani T, et al. Design of ionizable lipids to overcome the limiting step of endosomal escape : application in the intracellular delivery of mRNA. DNA and siRNA. J Med Chem 2016 ; 59 : 3 046–062. [Google Scholar]
  11. Blanchard E, Loomis KH, Bhosle SM, et al. Proximity Ligation Assays for In Situ Detection of Innate Immune Activation : Focus on In Vitro-Transcribed mRNA. Mol Ther Nucleic Acids 2019 ; 14 : 52–66. [CrossRef] [PubMed] [Google Scholar]
  12. Bhosle SM, Loomis KH, Kirschman JL, et al. Unifying in vitro and in vivo IVT mRNA expression discrepancies in skeletal muscle via mechanotransduction. Biomaterials 2018 ; 159 : 189–203. [CrossRef] [PubMed] [Google Scholar]
  13. Lindsay KE, Bhosle SM, Zurla C, et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging. Nat Biomed Eng 2019 ; 3 : 371–380. [CrossRef] [PubMed] [Google Scholar]
  14. Le Bihan O, Chèvre R, Mornet S, et al. Probing the in vitro mechanism of action of cationic lipid/DNA lipoplexes at a nanometric scale. Nucleic Acids Res 2011 ; 39 : 1 595–609. [Google Scholar]
  15. Hou X, Zaks T, Langer R and Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater 2021; 6 : 1 078–94. [Google Scholar]
  16. Colombani T, Haudebourg T, Decossas M, et al. Lipidic Aminoglycoside Derivatives : A New Class of Immunomodulators Inducing a Potent Innate Immune Stimulation. Adv Sci (Weinh) 2019; 6 : 1 900 288. [CrossRef] [Google Scholar]
  17. Alameh MG, Tombácz I, Bettini E, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021; 54 : 2 877–92. [Google Scholar]
  18. Ndeupen S, Qin Z, Jacobsen S, et al. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 2021; 24 : 103 479. [Google Scholar]
  19. Barmada A, Klein J, Ramaswamy A, et al. Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated myocarditis. Sci Immunol 2023; 8 : eadh3455. [Google Scholar]
  20. Pitard B, Bello-Roufaï M, Lambert O, et al. Negatively charged self-assembling DNA/poloxamine nanospheres for in vivo gene transfer. Nucleic Acids Res 2004 ; 16 : e159. [Google Scholar]
  21. Pitard B. Capped and uncapped RNA molecules and Block copolymers for intracellular delivery of RNA. Patent 2022 : US20220105203A1. [Google Scholar]
  22. Chèvre R, Le Bihan O, Beilvert F, et al. Amphiphilic block copolymers enhance the cellular uptake of DNA molecules through a facilitated plasma membrane transport. Nucleic Acids Res 2011 ; 39 : 1610–622. [Google Scholar]
  23. Colombani T, Haudebourg T, Pitard B. 704/DNA vaccines leverage cytoplasmic DNA stimulation to promote anti-HIV neutralizing antibody production in mice and strong immune response against alpha-fetoprotein in non-human primates. Mol Ther Nucleic Acids 2023; 32 : 743–57. [CrossRef] [PubMed] [Google Scholar]
  24. Verbeke R, Hogan ML, Loré K, Pardi N. Innate immune mechanisms of mRNA vaccines. Immunity 2022; 55 : 1993–2005. [CrossRef] [PubMed] [Google Scholar]
  25. Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors : the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005 ; 23 : 165–175. [CrossRef] [PubMed] [Google Scholar]
  26. Barbier AJ, Jiang AY, Zhang P, et al. The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol 2022; 40 : 840–54. [CrossRef] [PubMed] [Google Scholar]
  27. Liu S, Cheng Q, Wei T, et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat Mater 2021; 20 : 701–10. [CrossRef] [PubMed] [Google Scholar]
  28. Anttila V, Saraste A, Knuuti J, et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol Ther 2023; 31 : 866–74. [CrossRef] [PubMed] [Google Scholar]
  29. Rowe SM, Zuckerman JB, Dorgan D et al. Inhaled mRNA therapy for treatment of cystic fibrosis : Interim results of a randomized, double-blind, placebo-controlled phase 1/2 clinical study. J Cys Fibros 2023; 22 : 656–64. [CrossRef] [Google Scholar]
  30. Jiang AY, Witten J, Raji IO, et al. Combinatorial development of nebulized mRNA delivery formulations for the lungs. Nat Nanotechnol 2024; 19 : 364–75. [CrossRef] [PubMed] [Google Scholar]
  31. Seker Yilmaz B, Gissen P. Genetic Therapy Approaches for Ornithine Transcarbamylase Deficiency. Biomedicines. 2023; 8 : 2 227. [Google Scholar]
  32. Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater 2021; 6 : 1 078–94. [Google Scholar]
  33. Attarwala H, Lumley M, Liang M, et al. Translational Pharmacokinetic/Pharmacodynamic Model for mRNA-3927, an Investigational Therapeutic for the Treatment of Propionic Acidemia. Nucleic Acid Ther 2023; 33 : 141–7. [Google Scholar]
  34. Koeberl D, Schulze A, Sondheimer N, et al. Interim analyses of a first-in-human phase 1/2 mRNA trial for propionic acidaemia. Nature 2024; 628 : 872–7. [CrossRef] [PubMed] [Google Scholar]
  35. Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med 2021; 385 : 493–502. [CrossRef] [PubMed] [Google Scholar]
  36. August A, Attarwala HZ, Himansu S, et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat Med 2021; 27 : 2 224–33. [Google Scholar]
  37. BioNtech website. BioNtech mRNA pipeline. BNT153&BNT152: RiboCytokines IL-2 and IL-7 in various solid tumors. [Google Scholar]
  38. Moderna website. Moderna mRNA pipeline. mRNA-2752: OX40/IL-23/IL-36g (Triplet)/solid tumors/lymphoma. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.