Open Access
Issue
Med Sci (Paris)
Volume 40, Number 6-7, Juin-Juillet 2024
Page(s) 534 - 543
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024083
Published online 08 July 2024
  1. Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol 2017 ; 14 : 30–38. [CrossRef] [PubMed] [Google Scholar]
  2. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984 ; 311 : 819–823. [CrossRef] [PubMed] [Google Scholar]
  3. El-Armouche A, Eschenhagen T. Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Fail Rev 2009 ; 14 : 225–241. [CrossRef] [PubMed] [Google Scholar]
  4. McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014 ; 371 : 993–1004. [CrossRef] [PubMed] [Google Scholar]
  5. Petraina A, Nogales C, Krahn T, et al. Cyclic GMP modulating drugs in cardiovascular diseases: Mechanism-based network pharmacology. Cardiovasc Res 2022; 118 : 2085–102. [CrossRef] [PubMed] [Google Scholar]
  6. Anton SE, Kayser C, Maiellaro I, et al. Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell 2022; 185 : 1130–42. [CrossRef] [PubMed] [Google Scholar]
  7. Bock A, Annibale P, Konrad C, et al. Optical mapping of cAMP signaling at the nanometer scale. Cell 2020; 182 : 1519–30. [CrossRef] [PubMed] [Google Scholar]
  8. Nikolaev VO, Moshkov A, Lyon AR, et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 2010 ; 327 : 1653–1657. [CrossRef] [PubMed] [Google Scholar]
  9. Dickey DM, Dries DL, Margulies KB, Potter LR. Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts: GC-A is inactive in the failed cardiomyocyte. J Mol Cell Cardiol 2012 ; 52 : 727–732. [CrossRef] [PubMed] [Google Scholar]
  10. Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med 1991 ; 325 : 1468–1475. [CrossRef] [PubMed] [Google Scholar]
  11. Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 2013 ; 309 : 1268–1277. [CrossRef] [PubMed] [Google Scholar]
  12. Chen S, Yan C. An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases. Expert Opin Drug Discov 2021; 16 : 183–96. [CrossRef] [PubMed] [Google Scholar]
  13. Kamel R, Leroy J, Vandecasteele G, Fischmeister R. Phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 2023; 20 : 90–108. [CrossRef] [PubMed] [Google Scholar]
  14. Karam S, Margaria JP, Bourcier A, et al. Cardiac overexpression of PDE4B blunts b-adrenergic response and maladaptive remodeling in heart failure. Circulation 2020; 142 : 161–74. [CrossRef] [PubMed] [Google Scholar]
  15. Vettel C, Lindner M, Dewenter M, et al. Phosphodiesterase 2 protects against catecholamine-induced arrhythmias and preserves contractile function after myocardial infarction. Circ Res 2017 ; 120 : 120–132. [CrossRef] [PubMed] [Google Scholar]
  16. Mehel H, Emons J, Vettel C, et al. Phoshodiesterase-2 is upregulated in human failing hearts and blunts ß-adrenergic responses in cardiomyocytes. J Am Coll Cardiol 2013 ; 62 : 1596–1606. [CrossRef] [PubMed] [Google Scholar]
  17. Miller CL, Oikawa M, Cai Y, et al. Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ Res 2009 ; 105 : 956–964. [CrossRef] [PubMed] [Google Scholar]
  18. Hashimoto T, Kim GE, Tunin RS, et al. Acute enhancement of cardiac function by phosphodiesterase type 1 inhibition - A translational study in the dog and rabbit. Circulation 2018 ; 138 : 1974–1987. [CrossRef] [PubMed] [Google Scholar]
  19. Knight W, Chen S, Zhang Y, et al. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction. Proc Natl Acad Sci USA 2016 ; 113 : E7116–E7E25. [CrossRef] [PubMed] [Google Scholar]
  20. Muller GK, Song J, Jani V, et al. PDE1 inhibition modulates Cav1.2 channel to stimulate cardiomyocyte contraction. Circ Res 2021; 129 : 872–86. [CrossRef] [PubMed] [Google Scholar]
  21. Vandeput F, Wolda SL, Krall J, et al. Cyclic nucleotide phosphodiesterase PDE1C1in human cardiac myocytes. J Biol Chem 2007 ; 282 : 32749–32757. [CrossRef] [PubMed] [Google Scholar]
  22. Wu MP, Zhang YS, Xu X, et al. Vinpocetine attenuates pathological cardiac remodeling by inhibiting cardiac hypertrophy and fibrosis. Cardiovasc Drugs Ther 2017 ; 31 : 157–166. [CrossRef] [PubMed] [Google Scholar]
  23. Zhang H, Pan B, Wu P, et al. PDE1 inhibition facilitates proteasomal degradation of misfolded proteins and protects against cardiac proteinopathy. Sci Adv 2019; 5 : eaaw5870. [CrossRef] [PubMed] [Google Scholar]
  24. Zhang Y, Knight W, Chen S, et al. Multiprotein complex with TRPC (transient receptor potential-canonical) channel, PDE1C (phosphodiesterase 1C), and A2R (adenosine A2 receptor) plays a critical role in regulating cardiomyocyte cAMP and survival. Circulation 2018 ; 138 : 1988–2002. [CrossRef] [PubMed] [Google Scholar]
  25. Gilotra NA, DeVore AD, Povsic TJ, et al. Acute hemodynamic effects and tolerability of phosphodiesterase-1 inhibition with ITI-214 in human systolic heart failure. Circ Heart Fail 2021; 14 : e008236. [CrossRef] [PubMed] [Google Scholar]
  26. Sprenger JU, Perera RK, Steinbrecher JH, et al. In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nat Commun 2015 ; 6 : 6965. [CrossRef] [PubMed] [Google Scholar]
  27. Wagner M, Sadek MS, Dybkova N, et al. Cellular mechanisms of the anti-arrhythmic effect of cardiac PDE2 overexpression. Int J Mol Sci 2021; 22 : 4816. [CrossRef] [PubMed] [Google Scholar]
  28. Martins TJ, Mumby MC, Beavo JA. Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem 1982 ; 257 : 1973–1979. [CrossRef] [PubMed] [Google Scholar]
  29. Castro LR, Verde I, Cooper DMF, Fischmeister R. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 2006 ; 113 : 2221–2228. [CrossRef] [PubMed] [Google Scholar]
  30. Cachorro E, Gunscht M, Schubert M, et al. CNP promotes antiarrhythmic effects via phosphodiesterase 2. Circ Res 2023; 132 : 400–14. [CrossRef] [PubMed] [Google Scholar]
  31. Zoccarato A, Surdo NC, Aronsen JM, et al. Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2. Circ Res 2015 ; 117 : 707–719. [CrossRef] [PubMed] [Google Scholar]
  32. Monterisi S, Lobo MJ, Livie C, et al. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling. Elife 2017 ; 6 : e21374. [CrossRef] [PubMed] [Google Scholar]
  33. Baliga RS, Preedy MEJ, Dukinfield MS, et al. Phosphodiesterase 2 inhibition preferentially promotes NO/guanylyl cyclase/cGMP signaling to reverse the development of heart failure. Proc Natl Acad Sci USA 2018 ; 115 : E7428–E7E37. [CrossRef] [PubMed] [Google Scholar]
  34. Liu K, Li D, Hao G, et al. Phosphodiesterase 2A as a therapeutic target to restore cardiac neurotransmission during sympathetic hyperactivity. JCI Insight 2018; 3 : pii: 98694. [CrossRef] [PubMed] [Google Scholar]
  35. Movsesian M, Wever-Pinzon O, Vandeput F. PDE3 inhibition in dilated cardiomyopathy. Curr Opin Pharmacol 2011 ; 11 : 707–713. [CrossRef] [PubMed] [Google Scholar]
  36. Polidovitch N, Yang S, Sun H, et al. Phosphodiesterase type 3A (PDE3A), but not type 3B (PDE3B), contributes to the adverse cardiac remodeling induced by pressure overload. J Mol Cell Cardiol 2019 ; 132 : 60–70. [CrossRef] [PubMed] [Google Scholar]
  37. Movsesian MA. PDE3 inhibition in dilated cardiomyopathy: reasons to reconsider. J Card Fail 2003 ; 9 : 475–480. [CrossRef] [PubMed] [Google Scholar]
  38. Nakata TM, Suzuki K, Uemura A, et al. Contrasting effects of inhibition of phosphodiesterase 3 and 5 on cardiac function and interstitial fibrosis in rats with isoproterenol-induced cardiac dysfunction. Jf Cardiovasc Pharmacol 2019 ; 73 : 195–205. [CrossRef] [PubMed] [Google Scholar]
  39. Yan C, Miller CL, Abe J. Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart. Circ Res 2007 ; 100 : 489–501. [CrossRef] [PubMed] [Google Scholar]
  40. Subramaniam G, Schleicher K, Kovanich D, et al. Integrated proteomics unveils nuclear PDE3A2 as a regulator of cardiac myocyte hypertrophy. Circ Res 2023; 132 : 828–48. [CrossRef] [PubMed] [Google Scholar]
  41. Oikawa M, Wu M, Lim S, et al. Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 2013 ; 64 : 11–19. [CrossRef] [PubMed] [Google Scholar]
  42. Ercu M, Mucke MB, Pallien T, et al. Mutant phosphodiesterase 3A protects from hypertension-induced cardiac damage. Circulation 2022; 146 : 1758–78. [CrossRef] [PubMed] [Google Scholar]
  43. Sanada S, Kitakaze M, Papst PJ, et al. Cardioprotective effect afforded by transient exposure to phosphodiesterase III inhibitors -The role of protein kinase A and p38 mitogen-activated protein kinase. Circulation 2001 ; 104 : 705–710. [CrossRef] [PubMed] [Google Scholar]
  44. Chung YW, Lagranha C, Chen Y, et al. Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc Natl Acad Sci USA 2015 ; 112 : E2253–E2262. [Google Scholar]
  45. Leroy J, Richter W, Mika D, et al. Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias. J Clin Invest 2011 ; 121 : 2651–2661. [CrossRef] [PubMed] [Google Scholar]
  46. Abi-Gerges A, Richter W, Lefebvre F, et al. Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals. Circ Res 2009 ; 105 : 784–792. [CrossRef] [PubMed] [Google Scholar]
  47. Lehnart SE, Wehrens XHT, Reiken S, et al. Phosphodiesterase 4D deficiency in the ryanodine receptor complex promotes heart failure and arrhythmias. Cell 2005 ; 123 : 23–35. [Google Scholar]
  48. Richter W, Xie M, Scheitrum C, et al. Conserved expression and functions of PDE4 in rodent and human heart. Basic Res Cardiol 2011 ; 106 : 249–262. [CrossRef] [PubMed] [Google Scholar]
  49. Berthouze-Duquesnes M, Lucas A, Sauliere A, et al. Specific interactions between Epac1, β-arrestin2 and PDE4D5 regulate β-adrenergic receptor subtypes differential effects on cardiac hypertrophic signaling. Cell Signal 2013 ; 25 : 970–980. [CrossRef] [PubMed] [Google Scholar]
  50. Mika D, Bobin P, Lindner M, et al. Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model. J Mol Cell Cardiol 2019 ; 133 : 57–66. [CrossRef] [PubMed] [Google Scholar]
  51. Molina CE, Leroy J, Xie M, et al. Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias. J Am Coll Cardiol 2012 ; 59 : 2182–2190. [CrossRef] [PubMed] [Google Scholar]
  52. Patrucco E, Albergine MS, Santana LF, Beavo JA. Phosphodiesterase 8A (PDE8A) regulates excitation-contraction coupling in ventricular myocytes. J Mol Cell Cardiol 2010 ; 49 : 330–333. [CrossRef] [PubMed] [Google Scholar]
  53. Grammatika Pavlidou N, Dobrev S, Beneke K, et al. Phosphodiesterase 8 governs cAMP/PKA-dependent reduction of L-type calcium current in human atrial fibrillation: a novel arrhythmogenic mechanism. Eur Heart J 2023 : 2483–94. [CrossRef] [PubMed] [Google Scholar]
  54. Takimoto E, Champion HC, Li M, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 2005 ; 11 : 214–222. [CrossRef] [PubMed] [Google Scholar]
  55. Lee DI, Zhu G, Sasaki T, et al. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 2015 ; 519 : 472–476. [CrossRef] [PubMed] [Google Scholar]
  56. Fukuma N, Takimoto E, Ueda K, et al. Estrogen receptor-a non-nuclear signaling confers cardioprotection and is essential to cGMP-PDE5 inhibition efficacy. JACC Basic Transl Sci 2020; 5 : 282–95. [CrossRef] [PubMed] [Google Scholar]
  57. Mishra S, Sadagopan N, Dunkerly-Eyring B, et al. Inhibition of phosphodiesterase type 9 reduces obesity and cardiometabolic syndrome in mice. J Clin Invest 2021; 131 : e148798. [CrossRef] [PubMed] [Google Scholar]
  58. Nagayama T, Zhang M, Hsu S, et al. Sustained soluble guanylate cyclase stimulation offsets nitric-oxide synthase inhibition to restore acute cardiac modulation by sildenafil. J Pharmacol Exp Ther 2008 ; 326 : 380–387. [CrossRef] [PubMed] [Google Scholar]
  59. Pokreisz P, Vandenwijngaert S, Bito V, et al. Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation 2009 ; 119 : 408–416. [CrossRef] [PubMed] [Google Scholar]
  60. Cooper TJ, Cleland JGF, Guazzi M, et al. Effects of sildenafil on symptoms and exercise capacity for heart failure with reduced ejection fraction and pulmonary hypertension (the SilHF study): a randomized placebo-controlled multicentre trial. Eur J Heart Fail 2022; 24 : 1239–48. [CrossRef] [PubMed] [Google Scholar]
  61. Scott NJA, Prickett TCR, Charles CJ, et al. Augmentation of natriuretic peptide bioactivity via combined inhibition of neprilysin and phosphodiesterase-9 in heart failure. JACC Heart Fail 2023; 11 : 227–39. [CrossRef] [PubMed] [Google Scholar]
  62. Chen S, Zhang Y, Lighthouse JK, et al. A novel role of cyclic nucleotide phosphodiesterase 10A in pathological cardiac remodeling and dysfunction. Circulation 2020; 141 : 217–33. [CrossRef] [PubMed] [Google Scholar]
  63. Chen S, Chen J, Du W, et al. PDE10A inactivation prevents doxorubicin-induced cardiotoxicity and tumor growth. Circ Res 2023; 133 : 138–57. [CrossRef] [PubMed] [Google Scholar]
  64. Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 2019 ; 18 : 770–796. [CrossRef] [PubMed] [Google Scholar]
  65. Blair CM, Baillie GS. Reshaping cAMP nanodomains through targeted disruption of compartmentalised phosphodiesterase signalosomes. Biochem Soc Trans 2019 ; 47 : 1405–1414. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.