Open Access
Numéro
Med Sci (Paris)
Volume 40, Numéro 6-7, Juin-Juillet 2024
Page(s) 534 - 543
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024083
Publié en ligne 8 juillet 2024
  1. Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol 2017 ; 14 : 30–38. [CrossRef] [PubMed] [Google Scholar]
  2. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984 ; 311 : 819–823. [CrossRef] [PubMed] [Google Scholar]
  3. El-Armouche A, Eschenhagen T. Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Fail Rev 2009 ; 14 : 225–241. [CrossRef] [PubMed] [Google Scholar]
  4. McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014 ; 371 : 993–1004. [CrossRef] [PubMed] [Google Scholar]
  5. Petraina A, Nogales C, Krahn T, et al. Cyclic GMP modulating drugs in cardiovascular diseases: Mechanism-based network pharmacology. Cardiovasc Res 2022; 118 : 2085–102. [CrossRef] [PubMed] [Google Scholar]
  6. Anton SE, Kayser C, Maiellaro I, et al. Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell 2022; 185 : 1130–42. [CrossRef] [PubMed] [Google Scholar]
  7. Bock A, Annibale P, Konrad C, et al. Optical mapping of cAMP signaling at the nanometer scale. Cell 2020; 182 : 1519–30. [CrossRef] [PubMed] [Google Scholar]
  8. Nikolaev VO, Moshkov A, Lyon AR, et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 2010 ; 327 : 1653–1657. [CrossRef] [PubMed] [Google Scholar]
  9. Dickey DM, Dries DL, Margulies KB, Potter LR. Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts: GC-A is inactive in the failed cardiomyocyte. J Mol Cell Cardiol 2012 ; 52 : 727–732. [CrossRef] [PubMed] [Google Scholar]
  10. Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med 1991 ; 325 : 1468–1475. [CrossRef] [PubMed] [Google Scholar]
  11. Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 2013 ; 309 : 1268–1277. [CrossRef] [PubMed] [Google Scholar]
  12. Chen S, Yan C. An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases. Expert Opin Drug Discov 2021; 16 : 183–96. [CrossRef] [PubMed] [Google Scholar]
  13. Kamel R, Leroy J, Vandecasteele G, Fischmeister R. Phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 2023; 20 : 90–108. [CrossRef] [PubMed] [Google Scholar]
  14. Karam S, Margaria JP, Bourcier A, et al. Cardiac overexpression of PDE4B blunts b-adrenergic response and maladaptive remodeling in heart failure. Circulation 2020; 142 : 161–74. [CrossRef] [PubMed] [Google Scholar]
  15. Vettel C, Lindner M, Dewenter M, et al. Phosphodiesterase 2 protects against catecholamine-induced arrhythmias and preserves contractile function after myocardial infarction. Circ Res 2017 ; 120 : 120–132. [CrossRef] [PubMed] [Google Scholar]
  16. Mehel H, Emons J, Vettel C, et al. Phoshodiesterase-2 is upregulated in human failing hearts and blunts ß-adrenergic responses in cardiomyocytes. J Am Coll Cardiol 2013 ; 62 : 1596–1606. [CrossRef] [PubMed] [Google Scholar]
  17. Miller CL, Oikawa M, Cai Y, et al. Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ Res 2009 ; 105 : 956–964. [CrossRef] [PubMed] [Google Scholar]
  18. Hashimoto T, Kim GE, Tunin RS, et al. Acute enhancement of cardiac function by phosphodiesterase type 1 inhibition - A translational study in the dog and rabbit. Circulation 2018 ; 138 : 1974–1987. [CrossRef] [PubMed] [Google Scholar]
  19. Knight W, Chen S, Zhang Y, et al. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction. Proc Natl Acad Sci USA 2016 ; 113 : E7116–E7E25. [CrossRef] [PubMed] [Google Scholar]
  20. Muller GK, Song J, Jani V, et al. PDE1 inhibition modulates Cav1.2 channel to stimulate cardiomyocyte contraction. Circ Res 2021; 129 : 872–86. [CrossRef] [PubMed] [Google Scholar]
  21. Vandeput F, Wolda SL, Krall J, et al. Cyclic nucleotide phosphodiesterase PDE1C1in human cardiac myocytes. J Biol Chem 2007 ; 282 : 32749–32757. [CrossRef] [PubMed] [Google Scholar]
  22. Wu MP, Zhang YS, Xu X, et al. Vinpocetine attenuates pathological cardiac remodeling by inhibiting cardiac hypertrophy and fibrosis. Cardiovasc Drugs Ther 2017 ; 31 : 157–166. [CrossRef] [PubMed] [Google Scholar]
  23. Zhang H, Pan B, Wu P, et al. PDE1 inhibition facilitates proteasomal degradation of misfolded proteins and protects against cardiac proteinopathy. Sci Adv 2019; 5 : eaaw5870. [CrossRef] [PubMed] [Google Scholar]
  24. Zhang Y, Knight W, Chen S, et al. Multiprotein complex with TRPC (transient receptor potential-canonical) channel, PDE1C (phosphodiesterase 1C), and A2R (adenosine A2 receptor) plays a critical role in regulating cardiomyocyte cAMP and survival. Circulation 2018 ; 138 : 1988–2002. [CrossRef] [PubMed] [Google Scholar]
  25. Gilotra NA, DeVore AD, Povsic TJ, et al. Acute hemodynamic effects and tolerability of phosphodiesterase-1 inhibition with ITI-214 in human systolic heart failure. Circ Heart Fail 2021; 14 : e008236. [CrossRef] [PubMed] [Google Scholar]
  26. Sprenger JU, Perera RK, Steinbrecher JH, et al. In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nat Commun 2015 ; 6 : 6965. [CrossRef] [PubMed] [Google Scholar]
  27. Wagner M, Sadek MS, Dybkova N, et al. Cellular mechanisms of the anti-arrhythmic effect of cardiac PDE2 overexpression. Int J Mol Sci 2021; 22 : 4816. [CrossRef] [PubMed] [Google Scholar]
  28. Martins TJ, Mumby MC, Beavo JA. Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem 1982 ; 257 : 1973–1979. [CrossRef] [PubMed] [Google Scholar]
  29. Castro LR, Verde I, Cooper DMF, Fischmeister R. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 2006 ; 113 : 2221–2228. [CrossRef] [PubMed] [Google Scholar]
  30. Cachorro E, Gunscht M, Schubert M, et al. CNP promotes antiarrhythmic effects via phosphodiesterase 2. Circ Res 2023; 132 : 400–14. [CrossRef] [PubMed] [Google Scholar]
  31. Zoccarato A, Surdo NC, Aronsen JM, et al. Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2. Circ Res 2015 ; 117 : 707–719. [CrossRef] [PubMed] [Google Scholar]
  32. Monterisi S, Lobo MJ, Livie C, et al. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling. Elife 2017 ; 6 : e21374. [CrossRef] [PubMed] [Google Scholar]
  33. Baliga RS, Preedy MEJ, Dukinfield MS, et al. Phosphodiesterase 2 inhibition preferentially promotes NO/guanylyl cyclase/cGMP signaling to reverse the development of heart failure. Proc Natl Acad Sci USA 2018 ; 115 : E7428–E7E37. [CrossRef] [PubMed] [Google Scholar]
  34. Liu K, Li D, Hao G, et al. Phosphodiesterase 2A as a therapeutic target to restore cardiac neurotransmission during sympathetic hyperactivity. JCI Insight 2018; 3 : pii: 98694. [CrossRef] [PubMed] [Google Scholar]
  35. Movsesian M, Wever-Pinzon O, Vandeput F. PDE3 inhibition in dilated cardiomyopathy. Curr Opin Pharmacol 2011 ; 11 : 707–713. [CrossRef] [PubMed] [Google Scholar]
  36. Polidovitch N, Yang S, Sun H, et al. Phosphodiesterase type 3A (PDE3A), but not type 3B (PDE3B), contributes to the adverse cardiac remodeling induced by pressure overload. J Mol Cell Cardiol 2019 ; 132 : 60–70. [CrossRef] [PubMed] [Google Scholar]
  37. Movsesian MA. PDE3 inhibition in dilated cardiomyopathy: reasons to reconsider. J Card Fail 2003 ; 9 : 475–480. [CrossRef] [PubMed] [Google Scholar]
  38. Nakata TM, Suzuki K, Uemura A, et al. Contrasting effects of inhibition of phosphodiesterase 3 and 5 on cardiac function and interstitial fibrosis in rats with isoproterenol-induced cardiac dysfunction. Jf Cardiovasc Pharmacol 2019 ; 73 : 195–205. [CrossRef] [PubMed] [Google Scholar]
  39. Yan C, Miller CL, Abe J. Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart. Circ Res 2007 ; 100 : 489–501. [CrossRef] [PubMed] [Google Scholar]
  40. Subramaniam G, Schleicher K, Kovanich D, et al. Integrated proteomics unveils nuclear PDE3A2 as a regulator of cardiac myocyte hypertrophy. Circ Res 2023; 132 : 828–48. [CrossRef] [PubMed] [Google Scholar]
  41. Oikawa M, Wu M, Lim S, et al. Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 2013 ; 64 : 11–19. [CrossRef] [PubMed] [Google Scholar]
  42. Ercu M, Mucke MB, Pallien T, et al. Mutant phosphodiesterase 3A protects from hypertension-induced cardiac damage. Circulation 2022; 146 : 1758–78. [CrossRef] [PubMed] [Google Scholar]
  43. Sanada S, Kitakaze M, Papst PJ, et al. Cardioprotective effect afforded by transient exposure to phosphodiesterase III inhibitors -The role of protein kinase A and p38 mitogen-activated protein kinase. Circulation 2001 ; 104 : 705–710. [CrossRef] [PubMed] [Google Scholar]
  44. Chung YW, Lagranha C, Chen Y, et al. Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc Natl Acad Sci USA 2015 ; 112 : E2253–E2262. [Google Scholar]
  45. Leroy J, Richter W, Mika D, et al. Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias. J Clin Invest 2011 ; 121 : 2651–2661. [CrossRef] [PubMed] [Google Scholar]
  46. Abi-Gerges A, Richter W, Lefebvre F, et al. Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals. Circ Res 2009 ; 105 : 784–792. [CrossRef] [PubMed] [Google Scholar]
  47. Lehnart SE, Wehrens XHT, Reiken S, et al. Phosphodiesterase 4D deficiency in the ryanodine receptor complex promotes heart failure and arrhythmias. Cell 2005 ; 123 : 23–35. [Google Scholar]
  48. Richter W, Xie M, Scheitrum C, et al. Conserved expression and functions of PDE4 in rodent and human heart. Basic Res Cardiol 2011 ; 106 : 249–262. [CrossRef] [PubMed] [Google Scholar]
  49. Berthouze-Duquesnes M, Lucas A, Sauliere A, et al. Specific interactions between Epac1, β-arrestin2 and PDE4D5 regulate β-adrenergic receptor subtypes differential effects on cardiac hypertrophic signaling. Cell Signal 2013 ; 25 : 970–980. [CrossRef] [PubMed] [Google Scholar]
  50. Mika D, Bobin P, Lindner M, et al. Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model. J Mol Cell Cardiol 2019 ; 133 : 57–66. [CrossRef] [PubMed] [Google Scholar]
  51. Molina CE, Leroy J, Xie M, et al. Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias. J Am Coll Cardiol 2012 ; 59 : 2182–2190. [CrossRef] [PubMed] [Google Scholar]
  52. Patrucco E, Albergine MS, Santana LF, Beavo JA. Phosphodiesterase 8A (PDE8A) regulates excitation-contraction coupling in ventricular myocytes. J Mol Cell Cardiol 2010 ; 49 : 330–333. [CrossRef] [PubMed] [Google Scholar]
  53. Grammatika Pavlidou N, Dobrev S, Beneke K, et al. Phosphodiesterase 8 governs cAMP/PKA-dependent reduction of L-type calcium current in human atrial fibrillation: a novel arrhythmogenic mechanism. Eur Heart J 2023 : 2483–94. [CrossRef] [PubMed] [Google Scholar]
  54. Takimoto E, Champion HC, Li M, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 2005 ; 11 : 214–222. [CrossRef] [PubMed] [Google Scholar]
  55. Lee DI, Zhu G, Sasaki T, et al. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 2015 ; 519 : 472–476. [CrossRef] [PubMed] [Google Scholar]
  56. Fukuma N, Takimoto E, Ueda K, et al. Estrogen receptor-a non-nuclear signaling confers cardioprotection and is essential to cGMP-PDE5 inhibition efficacy. JACC Basic Transl Sci 2020; 5 : 282–95. [CrossRef] [PubMed] [Google Scholar]
  57. Mishra S, Sadagopan N, Dunkerly-Eyring B, et al. Inhibition of phosphodiesterase type 9 reduces obesity and cardiometabolic syndrome in mice. J Clin Invest 2021; 131 : e148798. [CrossRef] [PubMed] [Google Scholar]
  58. Nagayama T, Zhang M, Hsu S, et al. Sustained soluble guanylate cyclase stimulation offsets nitric-oxide synthase inhibition to restore acute cardiac modulation by sildenafil. J Pharmacol Exp Ther 2008 ; 326 : 380–387. [CrossRef] [PubMed] [Google Scholar]
  59. Pokreisz P, Vandenwijngaert S, Bito V, et al. Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation 2009 ; 119 : 408–416. [CrossRef] [PubMed] [Google Scholar]
  60. Cooper TJ, Cleland JGF, Guazzi M, et al. Effects of sildenafil on symptoms and exercise capacity for heart failure with reduced ejection fraction and pulmonary hypertension (the SilHF study): a randomized placebo-controlled multicentre trial. Eur J Heart Fail 2022; 24 : 1239–48. [CrossRef] [PubMed] [Google Scholar]
  61. Scott NJA, Prickett TCR, Charles CJ, et al. Augmentation of natriuretic peptide bioactivity via combined inhibition of neprilysin and phosphodiesterase-9 in heart failure. JACC Heart Fail 2023; 11 : 227–39. [CrossRef] [PubMed] [Google Scholar]
  62. Chen S, Zhang Y, Lighthouse JK, et al. A novel role of cyclic nucleotide phosphodiesterase 10A in pathological cardiac remodeling and dysfunction. Circulation 2020; 141 : 217–33. [CrossRef] [PubMed] [Google Scholar]
  63. Chen S, Chen J, Du W, et al. PDE10A inactivation prevents doxorubicin-induced cardiotoxicity and tumor growth. Circ Res 2023; 133 : 138–57. [CrossRef] [PubMed] [Google Scholar]
  64. Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 2019 ; 18 : 770–796. [CrossRef] [PubMed] [Google Scholar]
  65. Blair CM, Baillie GS. Reshaping cAMP nanodomains through targeted disruption of compartmentalised phosphodiesterase signalosomes. Biochem Soc Trans 2019 ; 47 : 1405–1414. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.