Free Access
Issue |
Med Sci (Paris)
Volume 40, Number 4, Avril 2024
|
|
---|---|---|
Page(s) | 369 - 376 | |
Section | Repères | |
DOI | https://doi.org/10.1051/medsci/2024028 | |
Published online | 23 April 2024 |
- DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry : New estimates of R&D costs. J Health Econ 2016 ; 47 : 20–33. [CrossRef] [PubMed] [Google Scholar]
- Waring MJ, Arrowsmith J, Leach ARet al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 2015 ; 14 : 475–486. [CrossRef] [PubMed] [Google Scholar]
- Ringel MS, Scannell JW, Baedeker M, et al. Breaking Eroom’s Law. Nat Rev Drug Discov 2020; 19 : 833–4. [CrossRef] [PubMed] [Google Scholar]
- Moingeon P. Artificial intelligence-driven drug development against autoimmune diseases. Trends Pharmacol Sci 2023; 44 : 411–24. [CrossRef] [PubMed] [Google Scholar]
- Turing A.. Computing machinery and intelligence. Mind 1950 ; 59 : 433–518. [CrossRef] [Google Scholar]
- Jean A. Une brève introduction à l’intelligence artificielle. Med Sci (Paris) 2020; 36 : 1059–67. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Haiech J. Parcourir l’histoire de l’intelligence artificielle, pour mieux la définir et la comprendre. Med Sci (Paris) 2020; 36 : 919–23. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Ullman S.. Using neuroscience to develop artificial intelligence. Science 2019 ; 363 : 692–693. [CrossRef] [PubMed] [Google Scholar]
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015 ; 521 : 436–444. [Google Scholar]
- Polton D. Les données de santé. Med Sci (Paris) 2018 ; 34 : 449–455. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Gorvel L, Chretien AS, Fattori S, et al. Apport de l’intelligence artificielle aux données multi-omiques dans les cancers du sein traités par chimiothérapie néo-adjuvante. Med Sci (Paris) 2022; 38 : 772–5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lavecchia A.. Deep learning in drug discovery : opportunities, challenges and future prospects. Drug Discov Today 2019 ; 24 : 2017–2032. [CrossRef] [PubMed] [Google Scholar]
- Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 2019 ; 18 : 463–477. [CrossRef] [PubMed] [Google Scholar]
- Liu Z, Roberts RA, Lal-Nag M, et al. AI-based language models powering drug discovery and development. Drug Discov Today 2021; 26 : 2593–607. [CrossRef] [PubMed] [Google Scholar]
- Moingeon P, Kuenemann M, Guedj M. Artificial intelligence-enhanced drug design and development : Toward a computational precision medicine. Drug Discov Today 2022; 27 : 215–22. [CrossRef] [PubMed] [Google Scholar]
- Tini G, Marchetti L, Priami C, et al. Multi-omics integration-a comparison of unsupervised clustering methodologies. Brief Bioinform 2019 ; 20 : 1269–1279. [CrossRef] [PubMed] [Google Scholar]
- Barabási AL, Gulbahce N, Loscalzo J. Network medicine : a network-based approach to human disease. Nat Rev Genet 2011 ; 12 : 56–68. [CrossRef] [PubMed] [Google Scholar]
- Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning. Nature 2020; 577 : 706–10. [CrossRef] [PubMed] [Google Scholar]
- Shah P, Kendall F, Khozin S, et al. Artificial intelligence and machine learning in clinical development : a translational perspective. npj Digit Med 2019; 2 : 1–5. [Google Scholar]
- Moingeon P, Chesnel M, Rousseau C, et al. Virtual patients, digital twins and causal disease models : paving the ground for virtual clinical studies. Drug Discov Today 2023; 28 : 103605. [CrossRef] [PubMed] [Google Scholar]
- Tucker A, Wang Z, Rotalinti Y, et al. Generating high-fidelity synthetic patient data for assessing machine learning healthcare software. npj Digit Med 2020; 3 : 1–13. [Google Scholar]
- Friedrich CM. A model qualification method for mechanistic physiological QSP models to support model-informed drug development. CPT Pharmacometrics Syst Pharmacol 2016 ; 5 : 43–53. [CrossRef] [PubMed] [Google Scholar]
- Wilkinson MD, Dumontier M, Aalbersberg IJ. The FAIR Guiding Principles for scientific data management and stewardship. Scientific data 2016 ; 3 : 160018. [CrossRef] [PubMed] [Google Scholar]
- Makarov VA. Best practices for artificial intelligence in life sciences research. Drug discovery today 2020; 26 : 1107–10. [Google Scholar]
- Stokes JM, Yang K, Swanson K, et al. A Deep Learning Approach to Antibiotic Discovery. Cell 2020; 180 : 688–702. [CrossRef] [PubMed] [Google Scholar]
- Pun FW, Ozerov IV, Zhavoronkov A. AI-powered therapeutic target discovery. Trends Pharmacol Sci 2023; 44 : 561–72. [CrossRef] [PubMed] [Google Scholar]
- Wachter RM, Brynjolfsson E. Will Generative Artificial Intelligence Deliver on Its Promise in Health Care? JAMA 2024; 331 : 61–9. [Google Scholar]
- Jayatunga, MK, Xie W, Ruder L, et al. AI in small-molecule drug discovery : a coming wave? Nature Rev Drug Discov 2022; 21 : 175–6. [CrossRef] [PubMed] [Google Scholar]
- Blaudin de Thé FX, Baudier C, Molitor E, et al. Transforming drug discovery with a high-throughput AI-powered platform : a five-year experience with Patrimony. Drug Discov Today 2023; 28 : 103772. [CrossRef] [PubMed] [Google Scholar]
- Yoo T, Kim TY, Joung IS. Industrializing AI/ML during the end-to-end drug discovery process. Curr Opin Structural Biol 2023, 79 : 102528. [CrossRef] [Google Scholar]
- Collins FS, Varmus H. A new initiative on precision medicine. New Engl J Med 2015 ; 37 : 793–795. [CrossRef] [PubMed] [Google Scholar]
- Dumas M, Fay AF, Charpentier E, Matricon J. Le jumeau numérique en santé – État des lieux et perspectives d’application à l’hôpital. Med Sci (Paris) 2023; 39 : 953–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Jordan B. Les secrets des variants. Med Sci (Paris) 2023; 39 : 981–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.