Accès gratuit
Numéro |
Med Sci (Paris)
Volume 40, Numéro 4, Avril 2024
|
|
---|---|---|
Page(s) | 369 - 376 | |
Section | Repères | |
DOI | https://doi.org/10.1051/medsci/2024028 | |
Publié en ligne | 23 avril 2024 |
- DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry : New estimates of R&D costs. J Health Econ 2016 ; 47 : 20–33. [CrossRef] [PubMed] [Google Scholar]
- Waring MJ, Arrowsmith J, Leach ARet al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 2015 ; 14 : 475–486. [CrossRef] [PubMed] [Google Scholar]
- Ringel MS, Scannell JW, Baedeker M, et al. Breaking Eroom’s Law. Nat Rev Drug Discov 2020; 19 : 833–4. [CrossRef] [PubMed] [Google Scholar]
- Moingeon P. Artificial intelligence-driven drug development against autoimmune diseases. Trends Pharmacol Sci 2023; 44 : 411–24. [CrossRef] [PubMed] [Google Scholar]
- Turing A.. Computing machinery and intelligence. Mind 1950 ; 59 : 433–518. [CrossRef] [Google Scholar]
- Jean A. Une brève introduction à l’intelligence artificielle. Med Sci (Paris) 2020; 36 : 1059–67. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Haiech J. Parcourir l’histoire de l’intelligence artificielle, pour mieux la définir et la comprendre. Med Sci (Paris) 2020; 36 : 919–23. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Ullman S.. Using neuroscience to develop artificial intelligence. Science 2019 ; 363 : 692–693. [CrossRef] [PubMed] [Google Scholar]
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015 ; 521 : 436–444. [Google Scholar]
- Polton D. Les données de santé. Med Sci (Paris) 2018 ; 34 : 449–455. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Gorvel L, Chretien AS, Fattori S, et al. Apport de l’intelligence artificielle aux données multi-omiques dans les cancers du sein traités par chimiothérapie néo-adjuvante. Med Sci (Paris) 2022; 38 : 772–5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lavecchia A.. Deep learning in drug discovery : opportunities, challenges and future prospects. Drug Discov Today 2019 ; 24 : 2017–2032. [CrossRef] [PubMed] [Google Scholar]
- Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 2019 ; 18 : 463–477. [CrossRef] [PubMed] [Google Scholar]
- Liu Z, Roberts RA, Lal-Nag M, et al. AI-based language models powering drug discovery and development. Drug Discov Today 2021; 26 : 2593–607. [CrossRef] [PubMed] [Google Scholar]
- Moingeon P, Kuenemann M, Guedj M. Artificial intelligence-enhanced drug design and development : Toward a computational precision medicine. Drug Discov Today 2022; 27 : 215–22. [CrossRef] [PubMed] [Google Scholar]
- Tini G, Marchetti L, Priami C, et al. Multi-omics integration-a comparison of unsupervised clustering methodologies. Brief Bioinform 2019 ; 20 : 1269–1279. [CrossRef] [PubMed] [Google Scholar]
- Barabási AL, Gulbahce N, Loscalzo J. Network medicine : a network-based approach to human disease. Nat Rev Genet 2011 ; 12 : 56–68. [CrossRef] [PubMed] [Google Scholar]
- Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning. Nature 2020; 577 : 706–10. [CrossRef] [PubMed] [Google Scholar]
- Shah P, Kendall F, Khozin S, et al. Artificial intelligence and machine learning in clinical development : a translational perspective. npj Digit Med 2019; 2 : 1–5. [Google Scholar]
- Moingeon P, Chesnel M, Rousseau C, et al. Virtual patients, digital twins and causal disease models : paving the ground for virtual clinical studies. Drug Discov Today 2023; 28 : 103605. [CrossRef] [PubMed] [Google Scholar]
- Tucker A, Wang Z, Rotalinti Y, et al. Generating high-fidelity synthetic patient data for assessing machine learning healthcare software. npj Digit Med 2020; 3 : 1–13. [Google Scholar]
- Friedrich CM. A model qualification method for mechanistic physiological QSP models to support model-informed drug development. CPT Pharmacometrics Syst Pharmacol 2016 ; 5 : 43–53. [CrossRef] [PubMed] [Google Scholar]
- Wilkinson MD, Dumontier M, Aalbersberg IJ. The FAIR Guiding Principles for scientific data management and stewardship. Scientific data 2016 ; 3 : 160018. [CrossRef] [PubMed] [Google Scholar]
- Makarov VA. Best practices for artificial intelligence in life sciences research. Drug discovery today 2020; 26 : 1107–10. [Google Scholar]
- Stokes JM, Yang K, Swanson K, et al. A Deep Learning Approach to Antibiotic Discovery. Cell 2020; 180 : 688–702. [CrossRef] [PubMed] [Google Scholar]
- Pun FW, Ozerov IV, Zhavoronkov A. AI-powered therapeutic target discovery. Trends Pharmacol Sci 2023; 44 : 561–72. [CrossRef] [PubMed] [Google Scholar]
- Wachter RM, Brynjolfsson E. Will Generative Artificial Intelligence Deliver on Its Promise in Health Care? JAMA 2024; 331 : 61–9. [Google Scholar]
- Jayatunga, MK, Xie W, Ruder L, et al. AI in small-molecule drug discovery : a coming wave? Nature Rev Drug Discov 2022; 21 : 175–6. [CrossRef] [PubMed] [Google Scholar]
- Blaudin de Thé FX, Baudier C, Molitor E, et al. Transforming drug discovery with a high-throughput AI-powered platform : a five-year experience with Patrimony. Drug Discov Today 2023; 28 : 103772. [CrossRef] [PubMed] [Google Scholar]
- Yoo T, Kim TY, Joung IS. Industrializing AI/ML during the end-to-end drug discovery process. Curr Opin Structural Biol 2023, 79 : 102528. [CrossRef] [Google Scholar]
- Collins FS, Varmus H. A new initiative on precision medicine. New Engl J Med 2015 ; 37 : 793–795. [CrossRef] [PubMed] [Google Scholar]
- Dumas M, Fay AF, Charpentier E, Matricon J. Le jumeau numérique en santé – État des lieux et perspectives d’application à l’hôpital. Med Sci (Paris) 2023; 39 : 953–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Jordan B. Les secrets des variants. Med Sci (Paris) 2023; 39 : 981–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.