Open Access
Issue
Med Sci (Paris)
Volume 40, Number 4, Avril 2024
Page(s) 351 - 360
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024037
Published online 23 April 2024
  1. Cullen NC, Leuzy A, Janelidze S, et al. Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations. Nat Commun 2021; 12 : 3555. [CrossRef] [PubMed] [Google Scholar]
  2. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s & Dementia 2017 ; 2017 : 13325–373. [Google Scholar]
  3. Zhang H, Ma Q, Zhang Y-Wet al. Proteolytic processing of Alzheimer’s β-amyloid precursor protein. J Neurochem 2012 ; 120 : 9–21. [CrossRef] [PubMed] [Google Scholar]
  4. Dubois B, Feldman HH, Jacova Cet al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 2014 ; 13 : 614–629. [CrossRef] [PubMed] [Google Scholar]
  5. Jack CR, Bennett DA, Blennow Ket al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018 ; 14 : 535–562. [CrossRef] [PubMed] [Google Scholar]
  6. Lehmann S, Delaby C, Boursier G, et al. Relevance of Aβ42/40 Ratio for Detection of Alzheimer Disease Pathology in Clinical Routine: The PLMR Scale. Front Aging Neurosci 2018 ; 10 : 138. [CrossRef] [PubMed] [Google Scholar]
  7. Delaby C, Estellés T, Zhu N, et al. The Aβ1-42/Aβ1-40 ratio in CSF is more strongly associated to tau markers and clinical progression than Aβ1-42 alone. Alz Res Therapy 2022; 14 : 20. [CrossRef] [Google Scholar]
  8. Jang H, Kim JS, Lee HJ, et al. Performance of the plasma Aβ42/Aβ40 ratio, measured with a novel HPLC-MS/MS method, as a biomarker of amyloid PET status in a DPUK-KOREAN cohort. Alzheimers Res Ther 2021; 13 : 179. [CrossRef] [PubMed] [Google Scholar]
  9. Alcolea D, Delaby C, Muñoz L, et al. Use of plasma biomarkers for AT(N) classification of neurodegenerative dementias. J Neurol Neurosurg Psychiatry 2021; 92 : 1206–14. [CrossRef] [PubMed] [Google Scholar]
  10. Ovod V, Ramsey KN, Mawuenyega KG, et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 2017 ; 13 : 841–849. [CrossRef] [PubMed] [Google Scholar]
  11. Brum WS, Docherty KF, Ashton NJ, et al. Effect of Neprilysin Inhibition on Alzheimer Disease Plasma Biomarkers: A Secondary Analysis of a Randomized Clinical Trial. JAMA Neurol 2023; e234719. [Google Scholar]
  12. Lim CZJ, Zhang Y, Chen Y, et al. Subtyping of circulating exosome-bound amyloid β reflects brain plaque deposition. Nat Commun 2019 ; 10 : 1144. [CrossRef] [PubMed] [Google Scholar]
  13. Soares Martins T, Trindade D, Vaz M, et al. Diagnostic and therapeutic potential of exosomes in Alzheimer’s disease. J Neurochem 2021; 156 : 162–81. [CrossRef] [PubMed] [Google Scholar]
  14. Babapour Mofrad R, Scheltens P, Kim S, et al. Plasma amyloid-β oligomerization assay as a pre-screening test for amyloid status. Alz Res Therapy 2021; 13 : 133. [CrossRef] [Google Scholar]
  15. Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 2016 ; 15 : 673–684. [CrossRef] [PubMed] [Google Scholar]
  16. Gonzalez-Ortiz F, Turton M, Kac PR, et al. Brain-derived tau: a novel blood-based biomarker for Alzheimer’s disease-type neurodegeneration. Brain 2023; 146 : 1152–65. [CrossRef] [PubMed] [Google Scholar]
  17. Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med 2020; 26 : 379–86. [CrossRef] [PubMed] [Google Scholar]
  18. Delaby C, Alcolea D, Hirtz C, et al. Blood amyloid and tau biomarkers as predictors of cerebrospinal fluid profiles. J Neural Transm (Vienna) 2022; 129 : 231–7. [CrossRef] [PubMed] [Google Scholar]
  19. Ashton NJ, Pascoal TA, Karikari TK, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol 2021; 141 : 709–24. [CrossRef] [PubMed] [Google Scholar]
  20. Barthélemy NR, Horie K, Sato C, et al. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J Exp Med 2020; 217 : e20200861. [CrossRef] [PubMed] [Google Scholar]
  21. Dujardin S, Commins C, Lathuiliere A, et al. Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat Med 2020; 26 : 1256–63. [CrossRef] [PubMed] [Google Scholar]
  22. Fortea J, Carmona-Iragui M, Benejam B, et al. Plasma and CSF biomarkers for the diagnosis of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study. Lancet Neurol 2018 ; 17 : 860–869. [CrossRef] [PubMed] [Google Scholar]
  23. Al Shweiki MR, Steinacker P, Oeckl P, et al. Neurofilament light chain as a blood biomarker to differentiate psychiatric disorders from behavioural variant frontotemporal dementia. J Psychiatr Res 2019 ; 113 : 137–140. [CrossRef] [PubMed] [Google Scholar]
  24. Chaves ML, Camozzato AL, Ferreira ED, et al. Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J Neuroinflammation 2010 ; 7 : 6. [CrossRef] [PubMed] [Google Scholar]
  25. Kim KY, Shin KY, Chang K-A. GFAP as a Potential Biomarker for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12 : 1309. [CrossRef] [PubMed] [Google Scholar]
  26. Elahi FM, Casaletto KB, La Joie R, et al. Plasma biomarkers of astrocytic and neuronal dysfunction in early- and late-onset Alzheimer’s disease. Alzheimer’s & Dementia 2020; 16 : 681–95. [CrossRef] [PubMed] [Google Scholar]
  27. Anwar S, Rivest S. Alzheimer’s disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert Opin Ther Targets 2020; 24 : 331–44. [CrossRef] [PubMed] [Google Scholar]
  28. Ferri E, Rossi PD, Geraci A, et al. The sTREM2 Concentrations in the Blood: A Marker of Neurodegeneration? Front Mol Biosci 2020; 7 : 627931. [Google Scholar]
  29. Gu L, Shu H, Wang Y. Soluble TREM2 in body fluid in Alzheimer’s disease and Parkinson’s disease. Neurol Sci 2023; 44 : 2743–51. [CrossRef] [PubMed] [Google Scholar]
  30. Craig-Schapiro R, Perrin RJ, Roe CM, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 2010 ; 68 : 903–912. [CrossRef] [PubMed] [Google Scholar]
  31. Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015 ; 14 : 388–405. [CrossRef] [PubMed] [Google Scholar]
  32. Delaby C, Julian A, Page G, et al. NFL strongly correlates with TNF-R1 in the plasma of AD patients, but not with cognitive decline. Sci Rep 2021; 11 : 10283. [CrossRef] [PubMed] [Google Scholar]
  33. Jellinger KAAlpha-synuclein pathology in Parkinson’s and Alzheimer’s disease brain: incidence and topographic distribution–a pilot study. Acta Neuropathol 2003 ; 106 : 191–201. [CrossRef] [PubMed] [Google Scholar]
  34. Mohaupt P, Pons M-L, Vialaret J, et al. β-Synuclein as a candidate blood biomarker for synaptic degeneration in Alzheimer’s disease. Alzheimers Res Ther 2022; 14 : 179. [CrossRef] [PubMed] [Google Scholar]
  35. Liu W, Lin H, He X, et al. Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer’s disease and mild cognitive impairment. Transl Psychiatry 2020; 10 : 125. [CrossRef] [PubMed] [Google Scholar]
  36. Chatterjee P, Mohammadi M, Goozee K, et al. Serum Hepcidin Levels in Cognitively Normal Older Adults with High Neocortical Amyloid-β Load. J Alzheimers Dis 2020; 76 : 291–301. [CrossRef] [PubMed] [Google Scholar]
  37. Fehlbaum-Beurdeley P, Sol O, Désiré L, et al. Validation of AclarusDxTM, a blood-based transcriptomic signature for the diagnosis of Alzheimer’s disease. J Alzheimers Dis 2012 ; 32 : 169–181. [CrossRef] [PubMed] [Google Scholar]
  38. Kao Y-C, Ho P-C, Tu Y-K, et al. Lipids and Alzheimer’s Disease. Int J Mol Sci 2020; 21 : 1505. [CrossRef] [PubMed] [Google Scholar]
  39. Kim J, Yoon H, Basak J, et al. Apolipoprotein E in synaptic plasticity and Alzheimer’s disease: potential cellular and molecular mechanisms. Mol Cells 2014 ; 37 : 767–776. [CrossRef] [PubMed] [Google Scholar]
  40. Hirtz C, Vialaret J, Nouadje G, et al. Development of new quantitative mass spectrometry and semi-automatic isofocusing methods for the determination of Apolipoprotein E typing. Clinica Chimica Acta 2016 ; 454 : 33–38. [CrossRef] [Google Scholar]
  41. Weinstein G, Beiser AS, Choi SH, et al. Serum brain-derived neurotrophic factor and the risk for dementia: the Framingham Heart Study. JAMA Neurol 2014 ; 71 : 55–61. [CrossRef] [PubMed] [Google Scholar]
  42. Sharif M, Noroozian M, Hashemian F. Do serum GDNF levels correlate with severity of Alzheimer’s disease? Neurol Sci 2021; 42 : 2865–72. [CrossRef] [PubMed] [Google Scholar]
  43. Teunissen CE, Veerhuis R, De Vente J, et al. Brain-specific fatty acid-binding protein is elevated in serum of patients with dementia-related diseases. Eur J Neurol 2011 ; 18 : 865–871. [CrossRef] [PubMed] [Google Scholar]
  44. Letra L, Rodrigues T, Matafome P, et al. Adiponectin and sporadic Alzheimer’s disease: Clinical and molecular links. Front Neuroendocrinol 2019 ; 52 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  45. Noguchi-Shinohara M, Yuki-Nozaki S, Abe C, et al. Diabetes Mellitus, Elevated Hemoglobin A1c, and Glycated Albumin Are Associated with the Presence of All-Cause Dementia and Alzheimer’s Disease: The JPSC-AD Study. J Alzheimers Dis 2022; 85 : 235–47. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.