Open Access
Numéro |
Med Sci (Paris)
Volume 40, Numéro 4, Avril 2024
|
|
---|---|---|
Page(s) | 351 - 360 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024037 | |
Publié en ligne | 23 avril 2024 |
- Cullen NC, Leuzy A, Janelidze S, et al. Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations. Nat Commun 2021; 12 : 3555. [CrossRef] [PubMed] [Google Scholar]
- Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s & Dementia 2017 ; 2017 : 13325–373. [Google Scholar]
- Zhang H, Ma Q, Zhang Y-Wet al. Proteolytic processing of Alzheimer’s β-amyloid precursor protein. J Neurochem 2012 ; 120 : 9–21. [CrossRef] [PubMed] [Google Scholar]
- Dubois B, Feldman HH, Jacova Cet al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 2014 ; 13 : 614–629. [CrossRef] [PubMed] [Google Scholar]
- Jack CR, Bennett DA, Blennow Ket al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018 ; 14 : 535–562. [CrossRef] [PubMed] [Google Scholar]
- Lehmann S, Delaby C, Boursier G, et al. Relevance of Aβ42/40 Ratio for Detection of Alzheimer Disease Pathology in Clinical Routine: The PLMR Scale. Front Aging Neurosci 2018 ; 10 : 138. [CrossRef] [PubMed] [Google Scholar]
- Delaby C, Estellés T, Zhu N, et al. The Aβ1-42/Aβ1-40 ratio in CSF is more strongly associated to tau markers and clinical progression than Aβ1-42 alone. Alz Res Therapy 2022; 14 : 20. [CrossRef] [Google Scholar]
- Jang H, Kim JS, Lee HJ, et al. Performance of the plasma Aβ42/Aβ40 ratio, measured with a novel HPLC-MS/MS method, as a biomarker of amyloid PET status in a DPUK-KOREAN cohort. Alzheimers Res Ther 2021; 13 : 179. [CrossRef] [PubMed] [Google Scholar]
- Alcolea D, Delaby C, Muñoz L, et al. Use of plasma biomarkers for AT(N) classification of neurodegenerative dementias. J Neurol Neurosurg Psychiatry 2021; 92 : 1206–14. [CrossRef] [PubMed] [Google Scholar]
- Ovod V, Ramsey KN, Mawuenyega KG, et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 2017 ; 13 : 841–849. [CrossRef] [PubMed] [Google Scholar]
- Brum WS, Docherty KF, Ashton NJ, et al. Effect of Neprilysin Inhibition on Alzheimer Disease Plasma Biomarkers: A Secondary Analysis of a Randomized Clinical Trial. JAMA Neurol 2023; e234719. [Google Scholar]
- Lim CZJ, Zhang Y, Chen Y, et al. Subtyping of circulating exosome-bound amyloid β reflects brain plaque deposition. Nat Commun 2019 ; 10 : 1144. [CrossRef] [PubMed] [Google Scholar]
- Soares Martins T, Trindade D, Vaz M, et al. Diagnostic and therapeutic potential of exosomes in Alzheimer’s disease. J Neurochem 2021; 156 : 162–81. [CrossRef] [PubMed] [Google Scholar]
- Babapour Mofrad R, Scheltens P, Kim S, et al. Plasma amyloid-β oligomerization assay as a pre-screening test for amyloid status. Alz Res Therapy 2021; 13 : 133. [CrossRef] [Google Scholar]
- Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 2016 ; 15 : 673–684. [CrossRef] [PubMed] [Google Scholar]
- Gonzalez-Ortiz F, Turton M, Kac PR, et al. Brain-derived tau: a novel blood-based biomarker for Alzheimer’s disease-type neurodegeneration. Brain 2023; 146 : 1152–65. [CrossRef] [PubMed] [Google Scholar]
- Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med 2020; 26 : 379–86. [CrossRef] [PubMed] [Google Scholar]
- Delaby C, Alcolea D, Hirtz C, et al. Blood amyloid and tau biomarkers as predictors of cerebrospinal fluid profiles. J Neural Transm (Vienna) 2022; 129 : 231–7. [CrossRef] [PubMed] [Google Scholar]
- Ashton NJ, Pascoal TA, Karikari TK, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol 2021; 141 : 709–24. [CrossRef] [PubMed] [Google Scholar]
- Barthélemy NR, Horie K, Sato C, et al. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J Exp Med 2020; 217 : e20200861. [CrossRef] [PubMed] [Google Scholar]
- Dujardin S, Commins C, Lathuiliere A, et al. Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat Med 2020; 26 : 1256–63. [CrossRef] [PubMed] [Google Scholar]
- Fortea J, Carmona-Iragui M, Benejam B, et al. Plasma and CSF biomarkers for the diagnosis of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study. Lancet Neurol 2018 ; 17 : 860–869. [CrossRef] [PubMed] [Google Scholar]
- Al Shweiki MR, Steinacker P, Oeckl P, et al. Neurofilament light chain as a blood biomarker to differentiate psychiatric disorders from behavioural variant frontotemporal dementia. J Psychiatr Res 2019 ; 113 : 137–140. [CrossRef] [PubMed] [Google Scholar]
- Chaves ML, Camozzato AL, Ferreira ED, et al. Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J Neuroinflammation 2010 ; 7 : 6. [CrossRef] [PubMed] [Google Scholar]
- Kim KY, Shin KY, Chang K-A. GFAP as a Potential Biomarker for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12 : 1309. [CrossRef] [PubMed] [Google Scholar]
- Elahi FM, Casaletto KB, La Joie R, et al. Plasma biomarkers of astrocytic and neuronal dysfunction in early- and late-onset Alzheimer’s disease. Alzheimer’s & Dementia 2020; 16 : 681–95. [CrossRef] [PubMed] [Google Scholar]
- Anwar S, Rivest S. Alzheimer’s disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert Opin Ther Targets 2020; 24 : 331–44. [CrossRef] [PubMed] [Google Scholar]
- Ferri E, Rossi PD, Geraci A, et al. The sTREM2 Concentrations in the Blood: A Marker of Neurodegeneration? Front Mol Biosci 2020; 7 : 627931. [Google Scholar]
- Gu L, Shu H, Wang Y. Soluble TREM2 in body fluid in Alzheimer’s disease and Parkinson’s disease. Neurol Sci 2023; 44 : 2743–51. [CrossRef] [PubMed] [Google Scholar]
- Craig-Schapiro R, Perrin RJ, Roe CM, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 2010 ; 68 : 903–912. [CrossRef] [PubMed] [Google Scholar]
- Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015 ; 14 : 388–405. [CrossRef] [PubMed] [Google Scholar]
- Delaby C, Julian A, Page G, et al. NFL strongly correlates with TNF-R1 in the plasma of AD patients, but not with cognitive decline. Sci Rep 2021; 11 : 10283. [CrossRef] [PubMed] [Google Scholar]
- Jellinger KAAlpha-synuclein pathology in Parkinson’s and Alzheimer’s disease brain: incidence and topographic distribution–a pilot study. Acta Neuropathol 2003 ; 106 : 191–201. [CrossRef] [PubMed] [Google Scholar]
- Mohaupt P, Pons M-L, Vialaret J, et al. β-Synuclein as a candidate blood biomarker for synaptic degeneration in Alzheimer’s disease. Alzheimers Res Ther 2022; 14 : 179. [CrossRef] [PubMed] [Google Scholar]
- Liu W, Lin H, He X, et al. Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer’s disease and mild cognitive impairment. Transl Psychiatry 2020; 10 : 125. [CrossRef] [PubMed] [Google Scholar]
- Chatterjee P, Mohammadi M, Goozee K, et al. Serum Hepcidin Levels in Cognitively Normal Older Adults with High Neocortical Amyloid-β Load. J Alzheimers Dis 2020; 76 : 291–301. [CrossRef] [PubMed] [Google Scholar]
- Fehlbaum-Beurdeley P, Sol O, Désiré L, et al. Validation of AclarusDxTM, a blood-based transcriptomic signature for the diagnosis of Alzheimer’s disease. J Alzheimers Dis 2012 ; 32 : 169–181. [CrossRef] [PubMed] [Google Scholar]
- Kao Y-C, Ho P-C, Tu Y-K, et al. Lipids and Alzheimer’s Disease. Int J Mol Sci 2020; 21 : 1505. [CrossRef] [PubMed] [Google Scholar]
- Kim J, Yoon H, Basak J, et al. Apolipoprotein E in synaptic plasticity and Alzheimer’s disease: potential cellular and molecular mechanisms. Mol Cells 2014 ; 37 : 767–776. [CrossRef] [PubMed] [Google Scholar]
- Hirtz C, Vialaret J, Nouadje G, et al. Development of new quantitative mass spectrometry and semi-automatic isofocusing methods for the determination of Apolipoprotein E typing. Clinica Chimica Acta 2016 ; 454 : 33–38. [CrossRef] [Google Scholar]
- Weinstein G, Beiser AS, Choi SH, et al. Serum brain-derived neurotrophic factor and the risk for dementia: the Framingham Heart Study. JAMA Neurol 2014 ; 71 : 55–61. [CrossRef] [PubMed] [Google Scholar]
- Sharif M, Noroozian M, Hashemian F. Do serum GDNF levels correlate with severity of Alzheimer’s disease? Neurol Sci 2021; 42 : 2865–72. [CrossRef] [PubMed] [Google Scholar]
- Teunissen CE, Veerhuis R, De Vente J, et al. Brain-specific fatty acid-binding protein is elevated in serum of patients with dementia-related diseases. Eur J Neurol 2011 ; 18 : 865–871. [CrossRef] [PubMed] [Google Scholar]
- Letra L, Rodrigues T, Matafome P, et al. Adiponectin and sporadic Alzheimer’s disease: Clinical and molecular links. Front Neuroendocrinol 2019 ; 52 : 1–11. [CrossRef] [PubMed] [Google Scholar]
- Noguchi-Shinohara M, Yuki-Nozaki S, Abe C, et al. Diabetes Mellitus, Elevated Hemoglobin A1c, and Glycated Albumin Are Associated with the Presence of All-Cause Dementia and Alzheimer’s Disease: The JPSC-AD Study. J Alzheimers Dis 2022; 85 : 235–47. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.