Open Access
Issue
Med Sci (Paris)
Volume 40, Number 4, Avril 2024
Page(s) 343 - 350
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024038
Published online 23 April 2024
  1. Madsen T, Arnal A, Vittecoq M, et al. Cancer Prevalence and Etiology in Wild and Captive Animals. Paris: Elsevier Inc., 2009 : 11–46. [Google Scholar]
  2. Rothschild BM, Witzke BJ, Hershkovitz I. Metastatic cancer in the Jurassic. Lancet 1999 ; 354 : 398. [CrossRef] [PubMed] [Google Scholar]
  3. Aktipis AC, Boddy AM, Jansen G, et al. Cancer across the tree of life: Cooperation and cheating in multicellularity. Philos Trans R Soc B Biol Sci 2015 ; 370 : 20140219. [CrossRef] [PubMed] [Google Scholar]
  4. Scharrer B, Lochhead MS. Tumors in the Invertebrates: A Review. Cancer Res 1950 ; 10 : 403–419. [PubMed] [Google Scholar]
  5. Albuquerque TAF, Drummond do Val L, Doherty A, et al. From humans to hydra: patterns of cancer across the tree of life. Biol Rev 2018 ; 93 : 1715–1734. [CrossRef] [PubMed] [Google Scholar]
  6. Haridy Y, Witzmann F, Asbach P, et al. Triassic Cancer-Osteosarcoma in a 240-Million-Year-Old Stem-Turtle. JAMA Oncol 2019 ; 5 : 425. [CrossRef] [PubMed] [Google Scholar]
  7. Odes EJ, Randolph-Quinney PS, Steyn M, et al. Earliest hominin cancer: 1.7-million-yearold osteosarcoma from Swartkrans cave, South Africa. South Afr J Sci 2016; 112. [Google Scholar]
  8. Szathmáry E, Smith JM. The major evolutionary transitions. Nature 1995 ; 374 : 227–232. [CrossRef] [PubMed] [Google Scholar]
  9. DeGregori J.. Evolved tumor suppression: Why are we so good at not getting cancer?. Cancer Res 2011 ; 71 : 3739–3744. [CrossRef] [PubMed] [Google Scholar]
  10. Arnal A, Ujvari B, Crespi B, et al. Evolutionary perspective of cancer: Myth, metaphors, and reality. Evol Appl 2015 ; 8 : 541–544. [CrossRef] [PubMed] [Google Scholar]
  11. Capp J-P, DeGregori J, Nedelcu AM, et al. Group phenotypic composition in cancer. eLife 2021; 10 : 1–20. [Google Scholar]
  12. Lineweaver CH, Bussey KJ, Blackburn AC, et al. Cancer progression as a sequence of atavistic reversions. BioEssays 2021; 43. [Google Scholar]
  13. Thomas F, Ujvari B, Renaud F, et al. Cancer adaptations: Atavism, de novo selection, or something in between?. BioEssays 2017 ; 39. [Google Scholar]
  14. Thomas F, Jacqueline C, Tissot T, et al. The importance of cancer cells for animal evolutionary ecology. Nat Ecol Evol 2017 ; 1 : 1592–1595. [CrossRef] [PubMed] [Google Scholar]
  15. Frank SA. Age-Specific Acceleration of Cancer. Curr Biol 2004 ; 14 : 242–246. [CrossRef] [PubMed] [Google Scholar]
  16. Leroi AM, Koufopanou V, Burt A. Opinion: Cancer selection. Nat Rev Cancer 2003 ; 3 : 226–231. [CrossRef] [PubMed] [Google Scholar]
  17. Aktipis CA, Nesse RM. Evolutionary foundations for cancer biology. Evol Appl 2013 ; 6 : 144–159. [CrossRef] [PubMed] [Google Scholar]
  18. Sarver AL, Makielski KM, DePauw TA, et al. Increased risk of cancer in dogs and humans: A consequence of recent extension of lifespan beyond evolutionarily determined limitations? Aging Cancer 2022; 3 : 3–19. [CrossRef] [PubMed] [Google Scholar]
  19. Nunney L. Size matters: Height, cell number and a person’s risk of cancer. Proc R Soc B Biol Sci 2018; 285. [Google Scholar]
  20. Vincze O, Colchero F, Lemaître JF, et al. Cancer risk across mammals. Nature 2022; 601 : 263–7. [CrossRef] [PubMed] [Google Scholar]
  21. Natterson-Horowitz B, Aktipis A, Fox M, et al. The future of evolutionary medicine: sparking innovation in biomedicine and public health. Front Sci 2023; 1 : 997136. [CrossRef] [Google Scholar]
  22. Dujon AM, Vincze O, Lemaitre J-F, et al. The effect of placentation type, litter size, lactation and gestation length on cancer risk in mammals. Proc R Soc B Biol Sci 2023; 290. [Google Scholar]
  23. Seluanov A, Hine C, Azpurua J, et al. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proc Natl Acad Sci USA 2009 ; 106 : 19352–19357. [CrossRef] [PubMed] [Google Scholar]
  24. Tian X, Azpurua J, Hine C, et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 2013 ; 499 : 346–343. [CrossRef] [PubMed] [Google Scholar]
  25. Seluanov A, Gladyshev VN, Vijg J, et al. Mechanisms of cancer resistance in long-lived mammals. Nat Rev Cancer 2018 ; 18 : 433–441. [CrossRef] [PubMed] [Google Scholar]
  26. Zhao Y, Oreskovic E, Zhang Q, et al. Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat Immunol 2021; 22 : 1219–30. [CrossRef] [PubMed] [Google Scholar]
  27. Hadi F, Kulaberoglu Y, Lazarus KA, et al. Transformation of naked mole-rat cells. Nature 2020; 583 : E1–7. [CrossRef] [PubMed] [Google Scholar]
  28. Gorbunova V, Hine C, Tian X, et al. Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc Natl Acad Sci USA 2012 ; 109 : 19392–19396. [CrossRef] [PubMed] [Google Scholar]
  29. Nunney L. Cancer suppression and the evolution of multiple retrogene copies of TP53 in elephants: A re-evaluation. Evol Appl 2022; 15 : 891–901. [CrossRef] [PubMed] [Google Scholar]
  30. Vazquez JM, Sulak M, Chigurupati S, et al. A zombie LIF gene in elephants is up-regulated by TP53 to induce apoptosis in response to DNA damage. Cell Rep 2018 ; 24 : 1765–1776. [CrossRef] [PubMed] [Google Scholar]
  31. Vazquez JM, Pena MT, Muhammad B, et al. Parallel evolution of reduced cancer risk and tumor suppressor duplications in Xenarthra. eLife 2022; 11. [Google Scholar]
  32. Scheben A, Mendivil Ramos O, Kramer M, et al. Long-Read Sequencing Reveals Rapid Evolution of Immunity- and Cancer-Related Genes in Bats. Genome Biol Evol 2023; 15 : evad148. [CrossRef] [PubMed] [Google Scholar]
  33. Yim HS, Cho YS, Guang X, et al. Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 2014 ; 46 : 88–92. [CrossRef] [PubMed] [Google Scholar]
  34. Keane M, Semeiks J, Webb AE, et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep 2015 ; 10 : 112–122. [CrossRef] [PubMed] [Google Scholar]
  35. Warren WC, Kuderna L, Alexander A, et al. The Novel Evolution of the Sperm Whale Genome. Genome Biol Evol 2017 ; 9 : 3260–3264. [CrossRef] [PubMed] [Google Scholar]
  36. Tollis M, Robbins J, Webb AE, et al. Return to the sea, get huge, beat cancer: an analysis of cetacean genomes including an assembly for the humpback whale (Megaptera novaeangliae). Mol Biol Evol 2019 ; 36 : 1746–1763. [CrossRef] [PubMed] [Google Scholar]
  37. Sun D, Chai S, Huang X, et al. Novel Genomic Insights into Body Size Evolution in Cetaceans and a Resolution of Peto’s Paradox. Am Nat 2022; 199 : E28–42. [CrossRef] [PubMed] [Google Scholar]
  38. Nagy JD, Victor EM, Cropper JH. Why don’t all whales have cancer? A novel hypothesis resolving Peto’s paradox. Integr Comp Biol 2007 ; 47 : 317–328. [CrossRef] [PubMed] [Google Scholar]
  39. Vazquez JM, Lynch VJ. Pervasive duplication of tumor suppressors in afrotherians during the evolution of large bodies and reduced cancer risk. eLife 2021; 10. [Google Scholar]
  40. Ulhas Nair N, Cheng K, Naddaf L, et al. Cross-species identification of cancer resistance-associated genes that may mediate human cancer risk. Sci Adv 2022; 8 : eabj7176. [CrossRef] [PubMed] [Google Scholar]
  41. Perillo M, Punzo A, Caliceti C, et al. The spontaneous immortalization probability of mammalian cell culture strains, as their proliferative capacity, correlates with species body mass, not longevity. Biomed J 2023; 46 : 100596. [CrossRef] [PubMed] [Google Scholar]
  42. Nery MF, Rennó M, Picorelli A, et al. A phylogenetic review of cancer resistance highlights evolutionary solutions to Peto’s Paradox. Genet Mol Biol 2022; 45 : e20220133. [CrossRef] [PubMed] [Google Scholar]
  43. Trivedi DD, Dalai SK, Bakshi SR. The Mystery of Cancer Resistance: A Revelation Within Nature. J Mol Evol 2023; 91 : 133–55. [CrossRef] [PubMed] [Google Scholar]
  44. Kapsetaki SE, Compton ZT, Mellon W, et al. Germline mutation rate predicts cancer mortality across 37 vertebrate species. BioRxiv Prepr. Doi Httpsdoiorg10110120230813553123 2023. [Google Scholar]
  45. Dujon AM, Boutry J, Tissot S, et al. Cancer Susceptibility as a Cost of Reproduction and Contributor to Life History Evolution. Front Ecol Evol 2022; 10 : 861103. [CrossRef] [Google Scholar]
  46. García-Cao I, García-Cao M, Martín-Caballero J, et al. “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 2002 ; 21 : 6225–6235. [CrossRef] [PubMed] [Google Scholar]
  47. Matheu A, Maraver A, Klatt P, et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 2007 ; 448 : 375–379. [CrossRef] [PubMed] [Google Scholar]
  48. Fernandez A, Morris MR. Mate choice for more melanin as a mechanism to maintain a functional oncogene. Proc Natl Acad Sci USA 2008 ; 105 : 13503–13507. [CrossRef] [PubMed] [Google Scholar]
  49. Møller AP, Mousseau TA. Birds prefer to breed in sites with low radioactivity in Chernobyl. Proc Biol Sci 2007 ; 274 : 1443–1448. [PubMed] [Google Scholar]
  50. Dawson EH, Bailly TPM, Dos Santos J, et al. Social environment mediates cancer progression in Drosophila. Nat Commun 2018 ; 9 : 3574. [CrossRef] [PubMed] [Google Scholar]
  51. Arnal A, Jacqueline C, Ujvari B, et al. Cancer brings forward oviposition in the fly Drosophila melanogaster. Ecol Evol 2017 ; 7 : 272–276. [CrossRef] [PubMed] [Google Scholar]
  52. Boutry J, Tissot S, Mekaoui N, et al. Tumors alter life history traits in the freshwater cnidarian, Hydra oligactis. iScience 2022; 25 : 105034. [CrossRef] [PubMed] [Google Scholar]
  53. Jones ME, Cockburn A, Hamede R, et al. Life-history change in disease-ravaged Tasmanian devil populations. Proc Natl Acad Sci USA 2008 ; 105 : 10023–10027. [CrossRef] [PubMed] [Google Scholar]
  54. Fortunato A, Fleming A, Aktipis A, Maley CC. Upregulation of DNA repair genes and cell extrusion underpin the remarkable radiation resistance of Trichoplax adhaerens. PLoS Biol 2021; 19 : e3001471. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.