Open Access
Issue |
Med Sci (Paris)
Volume 39, Number 12, Décembre 2023
|
|
---|---|---|
Page(s) | 945 - 952 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2023179 | |
Published online | 18 December 2023 |
- Ge X-Y, Li J-L, Yang X-L, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013 ; 503 : 535–538. [CrossRef] [PubMed] [Google Scholar]
- Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012 ; 367 : 1814–1820. [Google Scholar]
- Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579 : 270–3. [CrossRef] [PubMed] [Google Scholar]
- Calisher CH, Childs JE, Field HE, et al. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 2006 ; 19 : 531–545. [CrossRef] [PubMed] [Google Scholar]
- Van Brussel K, Holmes EC. Zoonotic disease and virome diversity in bats. Curr Opin Virol 2022; 52 : 192–202. [CrossRef] [PubMed] [Google Scholar]
- Luis AD, Hayman DTS, O’Shea TJ, et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?. Proceedings of the Royal Society B: Biological Sciences 2013 ; 280 : 20122753. [CrossRef] [PubMed] [Google Scholar]
- Weinberg M, Yovel Y. Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience 2022; 25. [Google Scholar]
- Towner JS, Amman BR, Sealy TK, et al. Isolation of Genetically Diverse Marburg Viruses from Egyptian Fruit Bats. PLOS Pathog 2009 ; 5 : e1000536. [CrossRef] [PubMed] [Google Scholar]
- Halpin K, Young PL, Field HE, et al. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol 2000 ; 81 : 1927–1932. [CrossRef] [PubMed] [Google Scholar]
- Chua KB, Lek Koh C, Hooi PS, et al. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infection 2002 ; 4 : 145–151. [CrossRef] [Google Scholar]
- Ruiz-Aravena M, McKee C, Gamble A, et al. Ecology, evolution and spillover of coronaviruses from bats. Nat Rev Microbiol 2022; 20 : 299–314. [CrossRef] [PubMed] [Google Scholar]
- Shipley R, Wright E, Selden D, et al. Bats and Viruses: Emergence of Novel Lyssaviruses and Association of Bats with Viral Zoonoses in the EU. Trop Med Infect Dis 2019 ; 4 : 31. [CrossRef] [PubMed] [Google Scholar]
- Haydon DT, Cleaveland S, Taylor LH, Laurenson MKIdentifying Reservoirs of Infection: A Conceptual and Practical Challenge. Emerg Infect Dis 2002 ; 8 : 1468–1473. [CrossRef] [PubMed] [Google Scholar]
- Aicher S-M, Streicher F, Chazal M, et al. Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells. J Virol 2022; 96 : e0060822. [CrossRef] [PubMed] [Google Scholar]
- Sallard E, Halloy J, Casane D, et al. Retrouver les origines du SARS-CoV-2 dans les phylogénies de coronavirus. Med Sci (Paris) 2020; 36 : 783–96. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Frutos R, Gavotte L, Devaux CA. Le virus SARS-CoV-2 n’a pas « d’origine ». Med Sci (Paris) 2022; 38 : 600–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Temmam S, Vongphayloth K, Baquero E, et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 2022; 604 : 330–6. [CrossRef] [PubMed] [Google Scholar]
- Irving AT, Ahn M, Goh G, et al. Lessons from the host defences of bats, a unique viral reservoir. Nature 2021; 589 : 363–70. [CrossRef] [PubMed] [Google Scholar]
- Leroy É, Pourrut X, Gonzalez J-PLes chauves-souris, réservoirs du virus Ebola : Le mystère se dissipe. Med Sci (Paris) 2006 ; 22 : 78–80. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Amengual B, Bourhy H, López-Roig M, et al. Temporal Dynamics of European Bat Lyssavirus Type 1 and Survival of Myotis myotis Bats in Natural Colonies. PLOS ONE 2007 ; 2 : e566. [CrossRef] [PubMed] [Google Scholar]
- Brook CE, Dobson APBats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends Microbiol 2015 ; 23 : 172–180. [CrossRef] [PubMed] [Google Scholar]
- Zhou P, Tachedjian M, Wynne JW, et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci U S A 2016 ; 113 : 2696–2701. [CrossRef] [PubMed] [Google Scholar]
- Pavlovich SS, Lovett SP, Koroleva G, et al. The Egyptian Rousette Genome Reveals Unexpected Features of Bat Antiviral Immunity. Cell 2018 ; 173 : 1098–1110.e18. [CrossRef] [PubMed] [Google Scholar]
- Hölzer M, Schoen A, Wulle J, et al. Virus- and Interferon Alpha-Induced Transcriptomes of Cells from the Microbat Myotis daubentonii. iScience 2019; 19 : 647–61. [CrossRef] [PubMed] [Google Scholar]
- Zhou P, Cowled C, Mansell A, et al. IRF7 in the Australian Black Flying Fox, Pteropus alecto: Evidence for a Unique Expression Pattern and Functional Conservation. PLOS ONE 2014 ; 9 : 1–13. [Google Scholar]
- Banerjee A, Zhang X, Yip A, et al. Positive Selection of a Serine Residue in Bat IRF3 Confers Enhanced Antiviral Protection. iScience 2020; 23 : 100958. [CrossRef] [PubMed] [Google Scholar]
- He X, Korytár T, Schatz J, et al. Anti-Lyssaviral Activity of Interferons κ and ω from the Serotine Bat. Eptesicus serotinus. J Virol 2014 ; 88 : 5444–5454. [CrossRef] [PubMed] [Google Scholar]
- Shaw AE, Hughes J, Gu Q, et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLOS Biol 2017 ; 15 : e2004086. [CrossRef] [PubMed] [Google Scholar]
- De La Cruz-Rivera P, Kanchwala M, Liang H, et al. The IFN Response in Bats Displays Distinctive IFN-Stimulated Gene Expression Kinetics with Atypical RNASEL Induction. J Immunol 2018 ; 200 : 209–217. [CrossRef] [PubMed] [Google Scholar]
- Jacquet S, Culbertson M, Zhang C, et al. Adaptive duplication and genetic diversification of protein kinase R contribute to the specificity of bat-virus interactions. Sci Adv 2022; 8 : eadd7540. [CrossRef] [PubMed] [Google Scholar]
- Hayman DTS. Bat tolerance to viral infections. Nat Microbiol 2019 ; 4 : 728–729. [CrossRef] [PubMed] [Google Scholar]
- Banerjee A, Rapin N, Bollinger T, et al. Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci Rep 2017 ; 7 : 2232. [CrossRef] [PubMed] [Google Scholar]
- Ahn M, Anderson DE, Zhang Q, et al. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat Microbiol 2019 ; 4 : 789–799. [CrossRef] [PubMed] [Google Scholar]
- Ahn M, Chen VC-W, Rozario P, et al. Bat ASC2 suppresses inflammasomes and ameliorates inflammatory diseases. Cell 2023; 186 : 2144–2159.e22. [CrossRef] [PubMed] [Google Scholar]
- Goh G, Ahn M, Zhu F, et al. Complementary regulation of caspase-1 and IL-1β reveals additional mechanisms of dampened inflammation in bats. Proc Natl Acad Sci U S A 2020; 117 : 28939–49. [CrossRef] [PubMed] [Google Scholar]
- Zhang G, Cowled C, Shi Z, et al. Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity. Science 2013 ; 339 : 456–460. [CrossRef] [PubMed] [Google Scholar]
- Ahn M, Cui J, Irving AT, et al. Unique Loss of the PYHIN Gene Family in Bats Amongst Mammals: Implications for Inflammasome Sensing. Sci Rep 2016 ; 6 : 21722. [CrossRef] [PubMed] [Google Scholar]
- Xie J, Li Y, Shen X, et al. Dampened STING-Dependent Interferon Activation in Bats. Cell Host Microbe 2018 ; 23 : 297–301.e4. [CrossRef] [PubMed] [Google Scholar]
- Déjosez M, Marin A, Hughes GM, et al. Bat pluripotent stem cells reveal unusual entanglement between host and viruses. Cell 2023; 186 : 957–74.e28. [CrossRef] [PubMed] [Google Scholar]
- Chemarin M, Dufies O, Mazet A, et al. L’inflammasome NLRP3 dans la physiopathologie des infections virales - Un focus sur la COVID-19. Med Sci (Paris) 2022; 38 : 545–52. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.