Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 12, Décembre 2023
Page(s) 945 - 952
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023179
Publié en ligne 18 décembre 2023
  1. Ge X-Y, Li J-L, Yang X-L, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013 ; 503 : 535–538. [CrossRef] [PubMed] [Google Scholar]
  2. Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012 ; 367 : 1814–1820. [Google Scholar]
  3. Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579 : 270–3. [CrossRef] [PubMed] [Google Scholar]
  4. Calisher CH, Childs JE, Field HE, et al. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 2006 ; 19 : 531–545. [CrossRef] [PubMed] [Google Scholar]
  5. Van Brussel K, Holmes EC. Zoonotic disease and virome diversity in bats. Curr Opin Virol 2022; 52 : 192–202. [CrossRef] [PubMed] [Google Scholar]
  6. Luis AD, Hayman DTS, O’Shea TJ, et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?. Proceedings of the Royal Society B: Biological Sciences 2013 ; 280 : 20122753. [CrossRef] [PubMed] [Google Scholar]
  7. Weinberg M, Yovel Y. Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience 2022; 25. [Google Scholar]
  8. Towner JS, Amman BR, Sealy TK, et al. Isolation of Genetically Diverse Marburg Viruses from Egyptian Fruit Bats. PLOS Pathog 2009 ; 5 : e1000536. [CrossRef] [PubMed] [Google Scholar]
  9. Halpin K, Young PL, Field HE, et al. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol 2000 ; 81 : 1927–1932. [CrossRef] [PubMed] [Google Scholar]
  10. Chua KB, Lek Koh C, Hooi PS, et al. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infection 2002 ; 4 : 145–151. [CrossRef] [Google Scholar]
  11. Ruiz-Aravena M, McKee C, Gamble A, et al. Ecology, evolution and spillover of coronaviruses from bats. Nat Rev Microbiol 2022; 20 : 299–314. [CrossRef] [PubMed] [Google Scholar]
  12. Shipley R, Wright E, Selden D, et al. Bats and Viruses: Emergence of Novel Lyssaviruses and Association of Bats with Viral Zoonoses in the EU. Trop Med Infect Dis 2019 ; 4 : 31. [CrossRef] [PubMed] [Google Scholar]
  13. Haydon DT, Cleaveland S, Taylor LH, Laurenson MKIdentifying Reservoirs of Infection: A Conceptual and Practical Challenge. Emerg Infect Dis 2002 ; 8 : 1468–1473. [CrossRef] [PubMed] [Google Scholar]
  14. Aicher S-M, Streicher F, Chazal M, et al. Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells. J Virol 2022; 96 : e0060822. [CrossRef] [PubMed] [Google Scholar]
  15. Sallard E, Halloy J, Casane D, et al. Retrouver les origines du SARS-CoV-2 dans les phylogénies de coronavirus. Med Sci (Paris) 2020; 36 : 783–96. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Frutos R, Gavotte L, Devaux CA. Le virus SARS-CoV-2 n’a pas « d’origine ». Med Sci (Paris) 2022; 38 : 600–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  17. Temmam S, Vongphayloth K, Baquero E, et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 2022; 604 : 330–6. [CrossRef] [PubMed] [Google Scholar]
  18. Irving AT, Ahn M, Goh G, et al. Lessons from the host defences of bats, a unique viral reservoir. Nature 2021; 589 : 363–70. [CrossRef] [PubMed] [Google Scholar]
  19. Leroy É, Pourrut X, Gonzalez J-PLes chauves-souris, réservoirs du virus Ebola : Le mystère se dissipe. Med Sci (Paris) 2006 ; 22 : 78–80. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Amengual B, Bourhy H, López-Roig M, et al. Temporal Dynamics of European Bat Lyssavirus Type 1 and Survival of Myotis myotis Bats in Natural Colonies. PLOS ONE 2007 ; 2 : e566. [CrossRef] [PubMed] [Google Scholar]
  21. Brook CE, Dobson APBats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends Microbiol 2015 ; 23 : 172–180. [CrossRef] [PubMed] [Google Scholar]
  22. Zhou P, Tachedjian M, Wynne JW, et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci U S A 2016 ; 113 : 2696–2701. [CrossRef] [PubMed] [Google Scholar]
  23. Pavlovich SS, Lovett SP, Koroleva G, et al. The Egyptian Rousette Genome Reveals Unexpected Features of Bat Antiviral Immunity. Cell 2018 ; 173 : 1098–1110.e18. [CrossRef] [PubMed] [Google Scholar]
  24. Hölzer M, Schoen A, Wulle J, et al. Virus- and Interferon Alpha-Induced Transcriptomes of Cells from the Microbat Myotis daubentonii. iScience 2019; 19 : 647–61. [CrossRef] [PubMed] [Google Scholar]
  25. Zhou P, Cowled C, Mansell A, et al. IRF7 in the Australian Black Flying Fox, Pteropus alecto: Evidence for a Unique Expression Pattern and Functional Conservation. PLOS ONE 2014 ; 9 : 1–13. [Google Scholar]
  26. Banerjee A, Zhang X, Yip A, et al. Positive Selection of a Serine Residue in Bat IRF3 Confers Enhanced Antiviral Protection. iScience 2020; 23 : 100958. [CrossRef] [PubMed] [Google Scholar]
  27. He X, Korytár T, Schatz J, et al. Anti-Lyssaviral Activity of Interferons κ and ω from the Serotine Bat. Eptesicus serotinus. J Virol 2014 ; 88 : 5444–5454. [CrossRef] [PubMed] [Google Scholar]
  28. Shaw AE, Hughes J, Gu Q, et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLOS Biol 2017 ; 15 : e2004086. [CrossRef] [PubMed] [Google Scholar]
  29. De La Cruz-Rivera P, Kanchwala M, Liang H, et al. The IFN Response in Bats Displays Distinctive IFN-Stimulated Gene Expression Kinetics with Atypical RNASEL Induction. J Immunol 2018 ; 200 : 209–217. [CrossRef] [PubMed] [Google Scholar]
  30. Jacquet S, Culbertson M, Zhang C, et al. Adaptive duplication and genetic diversification of protein kinase R contribute to the specificity of bat-virus interactions. Sci Adv 2022; 8 : eadd7540. [CrossRef] [PubMed] [Google Scholar]
  31. Hayman DTS. Bat tolerance to viral infections. Nat Microbiol 2019 ; 4 : 728–729. [CrossRef] [PubMed] [Google Scholar]
  32. Banerjee A, Rapin N, Bollinger T, et al. Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci Rep 2017 ; 7 : 2232. [CrossRef] [PubMed] [Google Scholar]
  33. Ahn M, Anderson DE, Zhang Q, et al. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat Microbiol 2019 ; 4 : 789–799. [CrossRef] [PubMed] [Google Scholar]
  34. Ahn M, Chen VC-W, Rozario P, et al. Bat ASC2 suppresses inflammasomes and ameliorates inflammatory diseases. Cell 2023; 186 : 2144–2159.e22. [CrossRef] [PubMed] [Google Scholar]
  35. Goh G, Ahn M, Zhu F, et al. Complementary regulation of caspase-1 and IL-1β reveals additional mechanisms of dampened inflammation in bats. Proc Natl Acad Sci U S A 2020; 117 : 28939–49. [CrossRef] [PubMed] [Google Scholar]
  36. Zhang G, Cowled C, Shi Z, et al. Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity. Science 2013 ; 339 : 456–460. [CrossRef] [PubMed] [Google Scholar]
  37. Ahn M, Cui J, Irving AT, et al. Unique Loss of the PYHIN Gene Family in Bats Amongst Mammals: Implications for Inflammasome Sensing. Sci Rep 2016 ; 6 : 21722. [CrossRef] [PubMed] [Google Scholar]
  38. Xie J, Li Y, Shen X, et al. Dampened STING-Dependent Interferon Activation in Bats. Cell Host Microbe 2018 ; 23 : 297–301.e4. [CrossRef] [PubMed] [Google Scholar]
  39. Déjosez M, Marin A, Hughes GM, et al. Bat pluripotent stem cells reveal unusual entanglement between host and viruses. Cell 2023; 186 : 957–74.e28. [CrossRef] [PubMed] [Google Scholar]
  40. Chemarin M, Dufies O, Mazet A, et al. L’inflammasome NLRP3 dans la physiopathologie des infections virales - Un focus sur la COVID-19. Med Sci (Paris) 2022; 38 : 545–52. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.