Open Access
Issue
Med Sci (Paris)
Volume 39, Number 11, Novembre 2023
Page(s) 845 - 854
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023161
Published online 29 November 2023
  1. Dock G. The influence of complicating diseases upon leukaemia. The American Journal of the Medical Sciences (1827–1924) 1904; 127: 563. https://www.proquest.com/openview/eb5cb1ae1913ff84c02cc61afbbd8d5e/1?cbl=41361&pq-origsite=gscholar. [CrossRef] [Google Scholar]
  2. Bierman HR, Crile DM, Dod KS, et al. Remissions in leukemia of childhood following acute infectious disease. Staphylococcus and streptococcus, varicella, and feline panleukopenias. Cancer 1953 ; 6 : 591–605. [CrossRef] [PubMed] [Google Scholar]
  3. Liang M. Oncorine, the World First Oncolytic Virus Medicine and its Update in China. Curr Cancer Drug Targets 2018 ; 18 : 171–176. [CrossRef] [PubMed] [Google Scholar]
  4. Pol J, Kroemer G, Galluzzi L First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology 2015 ; 5 : e1115641. [Google Scholar]
  5. Ricca JM, Oseledchyk A, Walther T, et al. Pre-existing Immunity to Oncolytic Virus Potentiates Its Immunotherapeutic Efficacy. Mol Ther 2018 ; 26 : 1008–1019. [CrossRef] [PubMed] [Google Scholar]
  6. Muthuswamy R, Thorne S, Carter C, et al. 894 A novel oncolytic immunotherapy, VET3-TGI, overcomes TGFB1 mediated immunosuppression, augments type-1 immune response, and displays potent therapeutic activity in multiple mouse tumor models. J Immunother Cancer 2022; 10. [Google Scholar]
  7. Fu X, Meng F, Tao L, et al. A strict-late viral promoter is a strong tumor-specific promoter in the context of an oncolytic herpes simplex virus. Gene Ther 2003 ; 10 : 1458–1464. [CrossRef] [PubMed] [Google Scholar]
  8. Moolten FL, Wells J.-M. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 1990; 82 : 297–300. [CrossRef] [PubMed] [Google Scholar]
  9. Wildner O, Morris JC, Vahanian NN, et al. Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Ther 1999 ; 6 : 57–62. [CrossRef] [PubMed] [Google Scholar]
  10. Mullen CA, Kilstrup M, Blaese RM Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine : a negative selection system. Proc Natl Acad Sci USA 1992 ; 89 : 33–37. [CrossRef] [PubMed] [Google Scholar]
  11. McCart JA, Puhlmann M, Lee J, et al. Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression. Gene Ther 2000 ; 7 : 1217–1223. [CrossRef] [PubMed] [Google Scholar]
  12. Foloppe J, Kintz J, Futin N, et al. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther 2008 ; 15 : 1361–1371. [CrossRef] [PubMed] [Google Scholar]
  13. Erbs P, Regulier E, Kintz J, et al. In Vivo Cancer Gene Therapy by Adenovirus-mediated Transfer of a Bifunctional Yeast Cytosine Deaminase/Uracil Phosphoribosyltransferase Fusion Gene. Cancer Res 2000 ; 60 : 3813–3822. [PubMed] [Google Scholar]
  14. Berraondo P, Sanmamed MF, Ochoa MC, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer 2019 ; 120 : 6–15. [CrossRef] [PubMed] [Google Scholar]
  15. Liu W, Dai E, Liu Z, et al. In Situ Therapeutic Cancer Vaccination with an Oncolytic Virus Expressing Membrane-Tethered IL-2. Mol Ther - Oncolytics 2020; 17 : 350–60. [CrossRef] [Google Scholar]
  16. Santos JM, Cervera-Carrascon V, Havunen R, et al. Adenovirus Coding for Interleukin-2 and Tumor Necrosis Factor Alpha Replaces Lymphodepleting Chemotherapy in Adoptive T Cell Therapy. Mol Ther 2018 ; 26 : 2243–2254. [CrossRef] [PubMed] [Google Scholar]
  17. Clubb JHA, Kudling TV, Heiniö C, et al. Adenovirus Encoding Tumor Necrosis Factor Alpha and Interleukin 2 Induces a Tertiary Lymphoid Structure Signature in Immune Checkpoint Inhibitor Refractory Head and Neck Cancer. Front Immunol 2022; 13 : 794251. [CrossRef] [PubMed] [Google Scholar]
  18. Dieu-Nosjean M-C, Goc J, Giraldo NA, et al. Tertiary lymphoid structures in cancer and beyond. Trends Immunol 2014 ; 35 : 571–580. [CrossRef] [PubMed] [Google Scholar]
  19. He T, Hao Z, Lin M, et al. Oncolytic adenovirus promotes vascular normalization and nonclassical tertiary lymphoid structure formation through STING-mediated DC activation. Oncoimmunology 2022; 11 : 2093054. [CrossRef] [PubMed] [Google Scholar]
  20. Kudling TV, Clubb JHA, Quixabeira DCA, et al. Local delivery of interleukin 7 with an oncolytic adenovirus activates tumor-infiltrating lymphocytes and causes tumor regression. Oncoimmunology 2022; 11 : 2096572. [CrossRef] [PubMed] [Google Scholar]
  21. Ge Y, Wang H, Ren J, et al. Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. J Immunother Cancer 2020; 8 : e000710. [CrossRef] [PubMed] [Google Scholar]
  22. Chen T, Ding X, Liao Q, et al. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J Immunother Cancer 2021; 9 : e001647. [CrossRef] [PubMed] [Google Scholar]
  23. Li J, O’Malley M, Sampath P, et al. Expression of CCL19 from oncolytic vaccinia enhances immunotherapeutic potential while maintaining oncolytic activity. Neoplasia N Y N 2012 ; 14 : 1115–121. [CrossRef] [Google Scholar]
  24. Flanagan K, Glover RT, Hörig H, et al. Local delivery of recombinant vaccinia virus expressing secondary lymphoid chemokine (SLC) results in a CD4 T-cell dependent antitumor response. Vaccine 2004 ; 22 : 2894–2903. [CrossRef] [PubMed] [Google Scholar]
  25. Li F, Sheng Y, Hou W, et al. CCL5-armed oncolytic virus augments CCR5-engineered NK cell infiltration and antitumor efficiency. J Immunother Cancer 2020; 8 : e000131. [CrossRef] [PubMed] [Google Scholar]
  26. Eckert EC, Nace RA, Tonne JM, et al. Generation of a Tumor-Specific Chemokine Gradient Using Oncolytic Vesicular Stomatitis Virus Encoding CXCL9. Mol Ther Oncolytics 2020; 16 : 63–74. [CrossRef] [PubMed] [Google Scholar]
  27. Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade dysimmune toxicities : a collaborative position paper. Ann Oncol 2016 ; 27 : 559–574. [CrossRef] [PubMed] [Google Scholar]
  28. Kleinpeter P, Fend L, Thioudellet C, et al. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death -1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition. Oncoimmunology 2016 ; 5 : e1220467. [CrossRef] [PubMed] [Google Scholar]
  29. Wang G, Kang X, Chen KS, et al. An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses. Nat Commun 2020; 11 : 1395. [CrossRef] [PubMed] [Google Scholar]
  30. Bennett SR, Carbone FR, Karamalis F, et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998 ; 393 : 478–480. [CrossRef] [PubMed] [Google Scholar]
  31. Schiza A, Wenthe J, Mangsbo S, et al. Adenovirus-mediated CD40L gene transfer increases Teffector/Tregulatory cell ratio and upregulates death receptors in metastatic melanoma patients. J Transl Med 2017 ; 15 : 79. [CrossRef] [PubMed] [Google Scholar]
  32. Pesonen S, Diaconu I, Kangasniemi L, et al. Oncolytic immunotherapy of advanced solid tumors with a CD40L-expressing replicating adenovirus : assessment of safety and immunologic responses in patients. Cancer Res 2012 ; 72 : 1621–1631. [CrossRef] [PubMed] [Google Scholar]
  33. Melero I, Shuford WW, Newby SA, et al. Monoclonal antibodies against the 4–1BB T-cell activation molecule eradicate established tumors. Nat Med 1997 ; 3 : 682–685. [CrossRef] [PubMed] [Google Scholar]
  34. Tian L, Liu T, Jiang S, et al. Oncolytic Newcastle disease virus expressing the co-stimulator OX40L as immunopotentiator for colorectal cancer therapy. Gene Ther 2023; 30 : 64–74. [CrossRef] [PubMed] [Google Scholar]
  35. Calmels B, Paul S, Futin N, et al. Bypassing tumor-associated immune suppression with recombinant adenovirus constructs expressing membrane bound or secreted GITR-L. Cancer Gene Ther 2005 ; 12 : 198–205. [CrossRef] [PubMed] [Google Scholar]
  36. Yu F, Wang X, Guo ZS, et al. T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol Ther 2014 ; 22 : 102–111. [CrossRef] [PubMed] [Google Scholar]
  37. Wang Q, Ma X, Wu H, et al. Oncolytic adenovirus with MUC16-BiTE shows enhanced antitumor immune response by reversing the tumor microenvironment in PDX model of ovarian cancer. Oncoimmunology 2022; 11 : 2096362. [CrossRef] [PubMed] [Google Scholar]
  38. Jeong S-N, Yoo SY. Novel Oncolytic Virus Armed with Cancer Suicide Gene and Normal Vasculogenic Gene for Improved Anti-Tumor Activity. Cancers 2020; 12 : 1070. [CrossRef] [PubMed] [Google Scholar]
  39. Shakiba Y, Vorobyev PO, Naumenko VA, et al. Oncolytic Efficacy of a Recombinant Vaccinia Virus Strain Expressing Bacterial Flagellin in Solid Tumor Models. Viruses 2023; 15 : 828. [CrossRef] [PubMed] [Google Scholar]
  40. Li C, Zhu M, Lu Q, et al. Oncolytic adenovirus-mediated dual knockdown of survivin and OCT4 improves therapeutic efficacy in esophageal cancer. Ann Transl Med 2023; 11 : 193. [CrossRef] [PubMed] [Google Scholar]
  41. Guedan S, Rojas JJ, Gros A, et al. Hyaluronidase Expression by an Oncolytic Adenovirus Enhances Its Intratumoral Spread and Suppresses Tumor Growth. Mol Ther 2010 ; 18 : 1275–1283. [CrossRef] [PubMed] [Google Scholar]
  42. Mato-Berciano A, Morgado S, Maliandi MV, et al. Oncolytic adenovirus with hyaluronidase activity that evades neutralizing antibodies : VCN-11. J Control Release 2021; 332 : 517–28. [CrossRef] [PubMed] [Google Scholar]
  43. Schaik TA van, Moreno-Lama L, Aligholipour Farzani T, et al. Engineered cell-based therapies in ex vivo ready-made Cell Dex capsules have therapeutic efficacy in solid tumors. Biomed Pharmacother Biomedecine Pharmacother 2023; 162 : 114665. [CrossRef] [Google Scholar]
  44. Ho CT, Wu MH, Chen MJ, et al. Combination of Mesenchymal Stem Cell-Delivered Oncolytic Virus with Prodrug Activation Increases Efficacy and Safety of Colorectal Cancer Therapy. Biomedicines 2021; 9 : 548. [CrossRef] [PubMed] [Google Scholar]
  45. Sam M, Selman M, Zhao W, et al. Engineering Oncolytic Coxsackievirus A21 with Small Transgenes and Enabling Cell-Mediated Virus Delivery by Integrating Viral cDNA into the Genome. J Virol 2023; e0030923. [CrossRef] [PubMed] [Google Scholar]
  46. Jogler C, Hoffmann D, Theegarten D, et al. Replication Properties of Human Adenovirus In Vivo and in Cultures of Primary Cells from Different Animal Species. J Virol 2006 ; 80 : 3549–558. [CrossRef] [PubMed] [Google Scholar]
  47. Jia Y, Wang Y, Dunmall LSC, et al. Syrian hamster as an ideal animal model for evaluation of cancer immunotherapy. Front Immunol 2023; 14. [Google Scholar]
  48. Wold WSM, Toth K Chapter three–Syrian hamster as an animal model to study oncolytic adenoviruses and to evaluate the efficacy of antiviral compounds. Adv Cancer Res 2012 ; 115 : 69–92. [CrossRef] [PubMed] [Google Scholar]
  49. Haines BB, Denslow A, Grzesik P, et al. ONCR-177, an Oncolytic HSV-1 Designed to Potently Activate Systemic Antitumor Immunity. Cancer Immunol Res 2021; 9 : 291–308. [CrossRef] [PubMed] [Google Scholar]
  50. Ricordel M, Foloppe J, Antoine D, et al. Vaccinia Virus Shuffling : deVV5, a Novel Chimeric Poxvirus with Improved Oncolytic Potency. Cancers 2018 ; 10 : 231. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.