Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 11, Novembre 2023
Page(s) 845 - 854
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023161
Publié en ligne 29 novembre 2023
  1. Dock G. The influence of complicating diseases upon leukaemia. The American Journal of the Medical Sciences (1827–1924) 1904; 127: 563. https://www.proquest.com/openview/eb5cb1ae1913ff84c02cc61afbbd8d5e/1?cbl=41361&pq-origsite=gscholar. [CrossRef] [Google Scholar]
  2. Bierman HR, Crile DM, Dod KS, et al. Remissions in leukemia of childhood following acute infectious disease. Staphylococcus and streptococcus, varicella, and feline panleukopenias. Cancer 1953 ; 6 : 591–605. [CrossRef] [PubMed] [Google Scholar]
  3. Liang M. Oncorine, the World First Oncolytic Virus Medicine and its Update in China. Curr Cancer Drug Targets 2018 ; 18 : 171–176. [CrossRef] [PubMed] [Google Scholar]
  4. Pol J, Kroemer G, Galluzzi L First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology 2015 ; 5 : e1115641. [Google Scholar]
  5. Ricca JM, Oseledchyk A, Walther T, et al. Pre-existing Immunity to Oncolytic Virus Potentiates Its Immunotherapeutic Efficacy. Mol Ther 2018 ; 26 : 1008–1019. [CrossRef] [PubMed] [Google Scholar]
  6. Muthuswamy R, Thorne S, Carter C, et al. 894 A novel oncolytic immunotherapy, VET3-TGI, overcomes TGFB1 mediated immunosuppression, augments type-1 immune response, and displays potent therapeutic activity in multiple mouse tumor models. J Immunother Cancer 2022; 10. [Google Scholar]
  7. Fu X, Meng F, Tao L, et al. A strict-late viral promoter is a strong tumor-specific promoter in the context of an oncolytic herpes simplex virus. Gene Ther 2003 ; 10 : 1458–1464. [CrossRef] [PubMed] [Google Scholar]
  8. Moolten FL, Wells J.-M. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 1990; 82 : 297–300. [CrossRef] [PubMed] [Google Scholar]
  9. Wildner O, Morris JC, Vahanian NN, et al. Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Ther 1999 ; 6 : 57–62. [CrossRef] [PubMed] [Google Scholar]
  10. Mullen CA, Kilstrup M, Blaese RM Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine : a negative selection system. Proc Natl Acad Sci USA 1992 ; 89 : 33–37. [CrossRef] [PubMed] [Google Scholar]
  11. McCart JA, Puhlmann M, Lee J, et al. Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression. Gene Ther 2000 ; 7 : 1217–1223. [CrossRef] [PubMed] [Google Scholar]
  12. Foloppe J, Kintz J, Futin N, et al. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther 2008 ; 15 : 1361–1371. [CrossRef] [PubMed] [Google Scholar]
  13. Erbs P, Regulier E, Kintz J, et al. In Vivo Cancer Gene Therapy by Adenovirus-mediated Transfer of a Bifunctional Yeast Cytosine Deaminase/Uracil Phosphoribosyltransferase Fusion Gene. Cancer Res 2000 ; 60 : 3813–3822. [PubMed] [Google Scholar]
  14. Berraondo P, Sanmamed MF, Ochoa MC, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer 2019 ; 120 : 6–15. [CrossRef] [PubMed] [Google Scholar]
  15. Liu W, Dai E, Liu Z, et al. In Situ Therapeutic Cancer Vaccination with an Oncolytic Virus Expressing Membrane-Tethered IL-2. Mol Ther - Oncolytics 2020; 17 : 350–60. [CrossRef] [Google Scholar]
  16. Santos JM, Cervera-Carrascon V, Havunen R, et al. Adenovirus Coding for Interleukin-2 and Tumor Necrosis Factor Alpha Replaces Lymphodepleting Chemotherapy in Adoptive T Cell Therapy. Mol Ther 2018 ; 26 : 2243–2254. [CrossRef] [PubMed] [Google Scholar]
  17. Clubb JHA, Kudling TV, Heiniö C, et al. Adenovirus Encoding Tumor Necrosis Factor Alpha and Interleukin 2 Induces a Tertiary Lymphoid Structure Signature in Immune Checkpoint Inhibitor Refractory Head and Neck Cancer. Front Immunol 2022; 13 : 794251. [CrossRef] [PubMed] [Google Scholar]
  18. Dieu-Nosjean M-C, Goc J, Giraldo NA, et al. Tertiary lymphoid structures in cancer and beyond. Trends Immunol 2014 ; 35 : 571–580. [CrossRef] [PubMed] [Google Scholar]
  19. He T, Hao Z, Lin M, et al. Oncolytic adenovirus promotes vascular normalization and nonclassical tertiary lymphoid structure formation through STING-mediated DC activation. Oncoimmunology 2022; 11 : 2093054. [CrossRef] [PubMed] [Google Scholar]
  20. Kudling TV, Clubb JHA, Quixabeira DCA, et al. Local delivery of interleukin 7 with an oncolytic adenovirus activates tumor-infiltrating lymphocytes and causes tumor regression. Oncoimmunology 2022; 11 : 2096572. [CrossRef] [PubMed] [Google Scholar]
  21. Ge Y, Wang H, Ren J, et al. Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. J Immunother Cancer 2020; 8 : e000710. [CrossRef] [PubMed] [Google Scholar]
  22. Chen T, Ding X, Liao Q, et al. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J Immunother Cancer 2021; 9 : e001647. [CrossRef] [PubMed] [Google Scholar]
  23. Li J, O’Malley M, Sampath P, et al. Expression of CCL19 from oncolytic vaccinia enhances immunotherapeutic potential while maintaining oncolytic activity. Neoplasia N Y N 2012 ; 14 : 1115–121. [CrossRef] [Google Scholar]
  24. Flanagan K, Glover RT, Hörig H, et al. Local delivery of recombinant vaccinia virus expressing secondary lymphoid chemokine (SLC) results in a CD4 T-cell dependent antitumor response. Vaccine 2004 ; 22 : 2894–2903. [CrossRef] [PubMed] [Google Scholar]
  25. Li F, Sheng Y, Hou W, et al. CCL5-armed oncolytic virus augments CCR5-engineered NK cell infiltration and antitumor efficiency. J Immunother Cancer 2020; 8 : e000131. [CrossRef] [PubMed] [Google Scholar]
  26. Eckert EC, Nace RA, Tonne JM, et al. Generation of a Tumor-Specific Chemokine Gradient Using Oncolytic Vesicular Stomatitis Virus Encoding CXCL9. Mol Ther Oncolytics 2020; 16 : 63–74. [CrossRef] [PubMed] [Google Scholar]
  27. Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade dysimmune toxicities : a collaborative position paper. Ann Oncol 2016 ; 27 : 559–574. [CrossRef] [PubMed] [Google Scholar]
  28. Kleinpeter P, Fend L, Thioudellet C, et al. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death -1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition. Oncoimmunology 2016 ; 5 : e1220467. [CrossRef] [PubMed] [Google Scholar]
  29. Wang G, Kang X, Chen KS, et al. An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses. Nat Commun 2020; 11 : 1395. [CrossRef] [PubMed] [Google Scholar]
  30. Bennett SR, Carbone FR, Karamalis F, et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998 ; 393 : 478–480. [CrossRef] [PubMed] [Google Scholar]
  31. Schiza A, Wenthe J, Mangsbo S, et al. Adenovirus-mediated CD40L gene transfer increases Teffector/Tregulatory cell ratio and upregulates death receptors in metastatic melanoma patients. J Transl Med 2017 ; 15 : 79. [CrossRef] [PubMed] [Google Scholar]
  32. Pesonen S, Diaconu I, Kangasniemi L, et al. Oncolytic immunotherapy of advanced solid tumors with a CD40L-expressing replicating adenovirus : assessment of safety and immunologic responses in patients. Cancer Res 2012 ; 72 : 1621–1631. [CrossRef] [PubMed] [Google Scholar]
  33. Melero I, Shuford WW, Newby SA, et al. Monoclonal antibodies against the 4–1BB T-cell activation molecule eradicate established tumors. Nat Med 1997 ; 3 : 682–685. [CrossRef] [PubMed] [Google Scholar]
  34. Tian L, Liu T, Jiang S, et al. Oncolytic Newcastle disease virus expressing the co-stimulator OX40L as immunopotentiator for colorectal cancer therapy. Gene Ther 2023; 30 : 64–74. [CrossRef] [PubMed] [Google Scholar]
  35. Calmels B, Paul S, Futin N, et al. Bypassing tumor-associated immune suppression with recombinant adenovirus constructs expressing membrane bound or secreted GITR-L. Cancer Gene Ther 2005 ; 12 : 198–205. [CrossRef] [PubMed] [Google Scholar]
  36. Yu F, Wang X, Guo ZS, et al. T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol Ther 2014 ; 22 : 102–111. [CrossRef] [PubMed] [Google Scholar]
  37. Wang Q, Ma X, Wu H, et al. Oncolytic adenovirus with MUC16-BiTE shows enhanced antitumor immune response by reversing the tumor microenvironment in PDX model of ovarian cancer. Oncoimmunology 2022; 11 : 2096362. [CrossRef] [PubMed] [Google Scholar]
  38. Jeong S-N, Yoo SY. Novel Oncolytic Virus Armed with Cancer Suicide Gene and Normal Vasculogenic Gene for Improved Anti-Tumor Activity. Cancers 2020; 12 : 1070. [CrossRef] [PubMed] [Google Scholar]
  39. Shakiba Y, Vorobyev PO, Naumenko VA, et al. Oncolytic Efficacy of a Recombinant Vaccinia Virus Strain Expressing Bacterial Flagellin in Solid Tumor Models. Viruses 2023; 15 : 828. [CrossRef] [PubMed] [Google Scholar]
  40. Li C, Zhu M, Lu Q, et al. Oncolytic adenovirus-mediated dual knockdown of survivin and OCT4 improves therapeutic efficacy in esophageal cancer. Ann Transl Med 2023; 11 : 193. [CrossRef] [PubMed] [Google Scholar]
  41. Guedan S, Rojas JJ, Gros A, et al. Hyaluronidase Expression by an Oncolytic Adenovirus Enhances Its Intratumoral Spread and Suppresses Tumor Growth. Mol Ther 2010 ; 18 : 1275–1283. [CrossRef] [PubMed] [Google Scholar]
  42. Mato-Berciano A, Morgado S, Maliandi MV, et al. Oncolytic adenovirus with hyaluronidase activity that evades neutralizing antibodies : VCN-11. J Control Release 2021; 332 : 517–28. [CrossRef] [PubMed] [Google Scholar]
  43. Schaik TA van, Moreno-Lama L, Aligholipour Farzani T, et al. Engineered cell-based therapies in ex vivo ready-made Cell Dex capsules have therapeutic efficacy in solid tumors. Biomed Pharmacother Biomedecine Pharmacother 2023; 162 : 114665. [CrossRef] [Google Scholar]
  44. Ho CT, Wu MH, Chen MJ, et al. Combination of Mesenchymal Stem Cell-Delivered Oncolytic Virus with Prodrug Activation Increases Efficacy and Safety of Colorectal Cancer Therapy. Biomedicines 2021; 9 : 548. [CrossRef] [PubMed] [Google Scholar]
  45. Sam M, Selman M, Zhao W, et al. Engineering Oncolytic Coxsackievirus A21 with Small Transgenes and Enabling Cell-Mediated Virus Delivery by Integrating Viral cDNA into the Genome. J Virol 2023; e0030923. [CrossRef] [PubMed] [Google Scholar]
  46. Jogler C, Hoffmann D, Theegarten D, et al. Replication Properties of Human Adenovirus In Vivo and in Cultures of Primary Cells from Different Animal Species. J Virol 2006 ; 80 : 3549–558. [CrossRef] [PubMed] [Google Scholar]
  47. Jia Y, Wang Y, Dunmall LSC, et al. Syrian hamster as an ideal animal model for evaluation of cancer immunotherapy. Front Immunol 2023; 14. [Google Scholar]
  48. Wold WSM, Toth K Chapter three–Syrian hamster as an animal model to study oncolytic adenoviruses and to evaluate the efficacy of antiviral compounds. Adv Cancer Res 2012 ; 115 : 69–92. [CrossRef] [PubMed] [Google Scholar]
  49. Haines BB, Denslow A, Grzesik P, et al. ONCR-177, an Oncolytic HSV-1 Designed to Potently Activate Systemic Antitumor Immunity. Cancer Immunol Res 2021; 9 : 291–308. [CrossRef] [PubMed] [Google Scholar]
  50. Ricordel M, Foloppe J, Antoine D, et al. Vaccinia Virus Shuffling : deVV5, a Novel Chimeric Poxvirus with Improved Oncolytic Potency. Cancers 2018 ; 10 : 231. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.