Open Access
Issue
Med Sci (Paris)
Volume 39, Number 11, Novembre 2023
Page(s) 836 - 844
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023160
Published online 29 November 2023
  1. Girardeau G, Benchenane K, Wiener SI, et al. Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 2009 ; 12 : 1222–1223. [CrossRef] [PubMed] [Google Scholar]
  2. Ego-Stengel V, Wilson MA, Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 2009 ; 20 : 1–10. [Google Scholar]
  3. Dugué GP, Tricoire L, Principes et applications de l’optogénétique en neuroscience. Med Sci (Paris) 2015 ; 31 : 291–303. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Van de Ven GM, Trouche S, McNamara CGG, et al. Hippocampal Offline Reactivation Consolidates Recently Formed Cell Assembly Patterns during Sharp Wave-Ripples. Neuron 2016 : 1–7. [Google Scholar]
  5. Giri B, Miyawaki H, Mizuseki K, et al. Hippocampal Reactivation Extends for Several Hours Following Novel Experience. J Neurosci 2019 ; 39 : 866–875. [CrossRef] [PubMed] [Google Scholar]
  6. McNamara CG, Tejero-Cantero Á, Trouche S, et al. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat Neurosci 2014 ; 17 : 1658–1660. [CrossRef] [PubMed] [Google Scholar]
  7. Oliva A, Fernández-Ruiz A, Leroy F, et al. Hippocampal CA2 sharp-wave ripples reactivate and promote social memory. Nature 2020; 587 : 264–9. [CrossRef] [PubMed] [Google Scholar]
  8. Gridchyn I, Schoenenberger P, O’Neill J, et al. Assembly-Specific Disruption of Hippocampal Replay Leads to Selective Memory Deficit. Neuron 2020; 106 : 291–300.e6. [CrossRef] [PubMed] [Google Scholar]
  9. Pfeiffer BE, The content of hippocampal “replay”. Hippocampus 2018 : 1–13. [Google Scholar]
  10. Klinzing JG, Niethard N, Born J, Mechanisms of systems memory consolidation during sleep. Nat Neurosci 2019 ; 22 : 1598–1610. [CrossRef] [PubMed] [Google Scholar]
  11. Latchoumane CFV, Ngo HVV, Born J, et al. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms. Neuron 2017 ; 95 : 424–35.e6. [CrossRef] [PubMed] [Google Scholar]
  12. Maingret N, Girardeau G, Todorova R, et al. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci 2016 ; 19 : 959–964. [CrossRef] [PubMed] [Google Scholar]
  13. Marshall L, Helgadóttir H, Mölle M, et al. Boosting slow oscillations during sleep potentiates memory. Nature 2006 ; 444 : 610–613. [CrossRef] [PubMed] [Google Scholar]
  14. Fernandez LMJ, Lüthi A. Sleep Spindles: Mechanisms and Functions. Physiol Rev 2020; 100 : 805–68. [CrossRef] [PubMed] [Google Scholar]
  15. Peyrache A, Seibt J. A mechanism for learning with sleep spindles. Philos Trans R Soc B Biol Sci 2020; 375 : 20190230. [CrossRef] [PubMed] [Google Scholar]
  16. Gulati T, Guo L, Ramanathan DS, et al. Neural reactivations during sleep determine network credit assignment. Nat Neurosci 2017 ; 20 : 1277–1284. [CrossRef] [PubMed] [Google Scholar]
  17. Todorova R, Zugaro M, Isolated cortical computations during delta waves support memory consolidation. Science 2019 ; 366 : 377–381. [CrossRef] [PubMed] [Google Scholar]
  18. Karalis N, Sirota A. Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat Commun 2022; 13 : 467. [CrossRef] [PubMed] [Google Scholar]
  19. Skelin I, Zhang H, Zheng J, et al. Coupling between slow waves and sharp-wave ripples engages distributed neural activity during sleep in humans. Proc Natl Acad Sci USA 2021; 118 : e2012075118. [CrossRef] [PubMed] [Google Scholar]
  20. Rothschild G, Eban E, Frank LM, A cortical-hippocampal-cortical loop of information processing during memory consolidation. Nat Neurosci 2017 ; 20 : 251–259. [CrossRef] [PubMed] [Google Scholar]
  21. Bendor D, Wilson MA, Biasing the content of hippocampal replay during sleep. Nat Neurosci 2012 ; 15 : 1439–1444. [CrossRef] [PubMed] [Google Scholar]
  22. Ngo H-VV, Staresina BP. Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proc Natl Acad Sci USA 2022; 119 : e2123428119. [CrossRef] [PubMed] [Google Scholar]
  23. Lansink CS, Goltstein PM, Lankelma JV, et al. Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol 2009 ; 7 : e1000173. [CrossRef] [PubMed] [Google Scholar]
  24. Strange BA, Witter MP, Lein ES, et al. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 2014 ; 15 : 655–669. [CrossRef] [PubMed] [Google Scholar]
  25. Sosa M, Joo HR, Frank LM. Dorsal and Ventral Hippocampal Sharp-Wave Ripples Activate Distinct Nucleus Accumbens Networks. Neuron 2020; 105 : 725–41.e8. [CrossRef] [PubMed] [Google Scholar]
  26. LeDoux J., Emotion circuits in the brain. Annu Rev Neurosci 2000 : 155–184. [CrossRef] [PubMed] [Google Scholar]
  27. Girardeau G, Inema I, Buzsáki G, Reactivations of emotional memory in the hippocampus-amygdala system during sleep. Nat Neurosci 2017 ; 20 : 1634–1642. [CrossRef] [PubMed] [Google Scholar]
  28. Henry J.-P. Comment les neurosciences recherchent la clé des songes. Med/Sci (Paris) 2020; 36 : 929–34. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  29. Popa D, Duvarci S, Popescu AT, et al. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci USA 2010 ; 107 : 6516–6519. [CrossRef] [PubMed] [Google Scholar]
  30. Boyce R, Glasgow SD, Williams S, et al. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 2016 ; 23 : 812. [CrossRef] [PubMed] [Google Scholar]
  31. Kumar D, Koyanagi I, Carrier-Ruiz A, et al. Sparse Activity of Hippocampal Adult-Born Neurons during REM Sleep Is Necessary for Memory Consolidation. Neuron 2020; 107 : 552–565.e10. [CrossRef] [PubMed] [Google Scholar]
  32. Li W, Ma L, Yang G, et al. REM sleep selectively prunes and maintains new synapses in development and learning. Nat Neurosci 2017 ; 20 : 427–437. [CrossRef] [PubMed] [Google Scholar]
  33. Dv L. M. B, W. M, et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 2017 ; 355 : 507–510. [CrossRef] [PubMed] [Google Scholar]
  34. Tononi G, Cirelli C, Sleep function and synaptic homeostasis. Sleep Med Rev 2006 ; 10 : 49–62. [CrossRef] [PubMed] [Google Scholar]
  35. Vyazovskiy VV, Olcese U, Lazimy YM, et al. Cortical firing and sleep homeostasis. Neuron 2009 ; 63 : 865–878. [CrossRef] [PubMed] [Google Scholar]
  36. Grosmark AD, Mizuseki K, Pastalkova E, et al. REM Sleep Reorganizes Hippocampal Excitability. Neuron 2012 ; 75 : 1001–1007. [CrossRef] [PubMed] [Google Scholar]
  37. Miyawaki H, Watson BO, Diba K, Neuronal firing rates diverge during REM and homogenize during non-REM. Sci Rep 2019 ; 9 : 689. [CrossRef] [PubMed] [Google Scholar]
  38. Levenstein D, Watson BO, Rinzel J, et al. Sleep regulation of the distribution of cortical firing rates. Curr Opin Neurobiol 2017 ; 44 : 34–42. [CrossRef] [PubMed] [Google Scholar]
  39. Norimoto H, Makino K, Gao M, et al. Hippocampal ripples down-regulate synapses. Science 2018 ; 1527 : 1–8. [Google Scholar]
  40. Trouche S, Dupret D, Éclairer le cerveau pour réécrire une représentation mnésique. Med Sci (Paris) 2017 ; 33 : 349–351. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Tran TH, EL Mahzoum R, Fricker D, et al. Bases neurales de la mémoire et de la navigation spatiale. Med Sci (Paris) 2023; 39 : 507–14. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.