Open Access
Issue
Med Sci (Paris)
Volume 39, Number 11, Novembre 2023
Page(s) 862 - 868
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023163
Published online 29 November 2023
  1. Luria SE, Human ML. A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol 1952; 64 : 557–69. [CrossRef] [PubMed] [Google Scholar]
  2. Dussoix D, Arber W. Host specificity of DNA produced by Escherichia coli: II. Control over acceptance of DNA from infecting phage l. J Mol Biol 1962; 5 h 37–49. [CrossRef] [PubMed] [Google Scholar]
  3. Loenen WAM, Dryden DTF, Raleigh EA, et al. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 2014; 42 : 3–19. [CrossRef] [PubMed] [Google Scholar]
  4. Wilson GG. Type II restriction — modification systems. Trends Genet 1988; 4 : 314–8. [CrossRef] [PubMed] [Google Scholar]
  5. Tesson F, Hervé A, Mordret E, et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat Commun 2022; 13 : 2561. [CrossRef] [PubMed] [Google Scholar]
  6. Salmond GPC, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol 2015; 13 : 777–86. [CrossRef] [PubMed] [Google Scholar]
  7. Linn S. The 1978 Nobel Prize in Physiology or Medicine. Science 1978; 202 : 1069–71. [CrossRef] [PubMed] [Google Scholar]
  8. Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987; 169 : 5429–33. [CrossRef] [PubMed] [Google Scholar]
  9. Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315 : 1709–12. [CrossRef] [PubMed] [Google Scholar]
  10. Barrangou R, Marraffini LA. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 2014; 54 : 234–44. [CrossRef] [PubMed] [Google Scholar]
  11. Tremblay J.-P. CRISPR, un système qui permet de corriger ou de modifier l’expression de gènes responsables de maladies héréditaires. Med Sci (Paris) 2015; 31 : 1014–22. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Gilgenkrantz H. La révolution des CRISPR est en marche. Med Sci (Paris) 2014; 30 : 1066–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337 : 816–21. [CrossRef] [PubMed] [Google Scholar]
  14. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339 : 819–23. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  15. Westermann L, Neubauer B, Köttgen M. Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflugers Arch 2021; 473 : 1–2. [CrossRef] [PubMed] [Google Scholar]
  16. Makarova KS, Wolf YI, Snir S, et al. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 2011; 193 : 6039–56. [CrossRef] [PubMed] [Google Scholar]
  17. Doron S, Melamed S, Ofir G, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 2018; 359 : eaar4120. [CrossRef] [PubMed] [Google Scholar]
  18. Gao L, Altae-Tran H, Böhning F, et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 2020; 369 : 1077–84. [CrossRef] [PubMed] [Google Scholar]
  19. Millman A, Melamed S, Leavitt A, et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 2022; 30 : 1556–9.e5. [CrossRef] [PubMed] [Google Scholar]
  20. Rousset F, Depardieu F, Miele S, et al. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 2022; 30 : 740–53. [CrossRef] [PubMed] [Google Scholar]
  21. Vassallo CN, Doering CR, Littlehale ML, et al. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat Microbiol 2022; 7 : 1568–79. [CrossRef] [PubMed] [Google Scholar]
  22. Payne LJ, Todeschini TC, Wu Y, et al. Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types. Nucleic Acids Res 2021; 49 : 10868–78. [CrossRef] [PubMed] [Google Scholar]
  23. Bernheim A, Millman A, Ofir G, et al. Prokaryotic viperins produce diverse antiviral molecules. Nature 2021; 589 : 120–4. [CrossRef] [PubMed] [Google Scholar]
  24. Tal N, Sorek R. SnapShot: Bacterial immunity. Cell 2022; 185 : 578.e1. [Google Scholar]
  25. Georjon H, Tesson F, Shomar H, et al. Genomic characterization of the antiviral arsenal of Actinobacteria. 2023; 2023,03.30.534 874. [Google Scholar]
  26. Millman A, Melamed S, Amitai G, et al. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat Microbiol 2020; 5 : 1608–15. [CrossRef] [PubMed] [Google Scholar]
  27. Cohen D, Melamed S, Millman A, et al. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 2019; 574 : 691–5. [CrossRef] [PubMed] [Google Scholar]
  28. Millman A, Bernheim A, Stokar-Avihail A, et al. Bacterial retrons function in anti-phage defense. Cell 2020; 183 : 1551–61.e12. [CrossRef] [PubMed] [Google Scholar]
  29. Lopatina A, Tal N, Sorek R. Abortive Infection: Bacterial Suicide as an Antiviral Immune Strategy. Annu Rev Virol 2020; 7 : 371–84. [CrossRef] [PubMed] [Google Scholar]
  30. LeRoux M, Laub MT. Toxin-Antitoxin Systems as Phage Defense Elements. Annu Rev Microbiol 2022; 76 : 21–43. [CrossRef] [PubMed] [Google Scholar]
  31. LeRoux M, Srikant S, Teodoro GIC, et al. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat Microbiol 2022; 7 : 1028–40. [CrossRef] [PubMed] [Google Scholar]
  32. Garb J, Lopatina A, Bernheim A, et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD + depletion. Nat Microbiol 2022; 7 : 1849–56. [CrossRef] [PubMed] [Google Scholar]
  33. Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol 2020; 18 : 113–9. [CrossRef] [PubMed] [Google Scholar]
  34. Piel D, Bruto M, Labreuche Y, et al. Phage-host coevolution in natural populations. Nat Microbiol 2022; 7 : 1075–86. [CrossRef] [PubMed] [Google Scholar]
  35. Rousset F, Yirmiya E, Nesher S, et al. A conserved family of immune effectors cleaves cellular ATP upon viral infection. https://doi.org/10.1101/2023.01.24.525353. [Google Scholar]
  36. Maguin P, Varble A, Modell JW, et al. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response. Molecular Cell 2022; 82 : 907–19.e7. [CrossRef] [PubMed] [Google Scholar]
  37. Ofir G, Herbst E, Baroz M, et al. Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature 2021; 600 : 116–20. [CrossRef] [PubMed] [Google Scholar]
  38. Wein T, Sorek R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat Rev Immunol 2022; 22 : 629–38. [CrossRef] [PubMed] [Google Scholar]
  39. Cury J, Mordret E, Trejo VH, et al. Conservation of antiviral systems across domains of life reveals novel immune mechanisms in humans. https://www.biorxiv.org/content/10.1101/2022.12.12.520048v1. [Google Scholar]
  40. Jordan B. CRISPR : le Nobel, enfin… Med Sci (Paris) 2021; 37 : 77–80. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.