Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 11, Novembre 2023
Page(s) 862 - 868
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023163
Publié en ligne 29 novembre 2023
  1. Luria SE, Human ML. A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol 1952; 64 : 557–69. [CrossRef] [PubMed] [Google Scholar]
  2. Dussoix D, Arber W. Host specificity of DNA produced by Escherichia coli: II. Control over acceptance of DNA from infecting phage l. J Mol Biol 1962; 5 h 37–49. [CrossRef] [PubMed] [Google Scholar]
  3. Loenen WAM, Dryden DTF, Raleigh EA, et al. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 2014; 42 : 3–19. [CrossRef] [PubMed] [Google Scholar]
  4. Wilson GG. Type II restriction — modification systems. Trends Genet 1988; 4 : 314–8. [CrossRef] [PubMed] [Google Scholar]
  5. Tesson F, Hervé A, Mordret E, et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat Commun 2022; 13 : 2561. [CrossRef] [PubMed] [Google Scholar]
  6. Salmond GPC, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol 2015; 13 : 777–86. [CrossRef] [PubMed] [Google Scholar]
  7. Linn S. The 1978 Nobel Prize in Physiology or Medicine. Science 1978; 202 : 1069–71. [CrossRef] [PubMed] [Google Scholar]
  8. Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987; 169 : 5429–33. [CrossRef] [PubMed] [Google Scholar]
  9. Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315 : 1709–12. [CrossRef] [PubMed] [Google Scholar]
  10. Barrangou R, Marraffini LA. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 2014; 54 : 234–44. [CrossRef] [PubMed] [Google Scholar]
  11. Tremblay J.-P. CRISPR, un système qui permet de corriger ou de modifier l’expression de gènes responsables de maladies héréditaires. Med Sci (Paris) 2015; 31 : 1014–22. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Gilgenkrantz H. La révolution des CRISPR est en marche. Med Sci (Paris) 2014; 30 : 1066–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337 : 816–21. [CrossRef] [PubMed] [Google Scholar]
  14. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339 : 819–23. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  15. Westermann L, Neubauer B, Köttgen M. Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflugers Arch 2021; 473 : 1–2. [CrossRef] [PubMed] [Google Scholar]
  16. Makarova KS, Wolf YI, Snir S, et al. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 2011; 193 : 6039–56. [CrossRef] [PubMed] [Google Scholar]
  17. Doron S, Melamed S, Ofir G, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 2018; 359 : eaar4120. [CrossRef] [PubMed] [Google Scholar]
  18. Gao L, Altae-Tran H, Böhning F, et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 2020; 369 : 1077–84. [CrossRef] [PubMed] [Google Scholar]
  19. Millman A, Melamed S, Leavitt A, et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 2022; 30 : 1556–9.e5. [CrossRef] [PubMed] [Google Scholar]
  20. Rousset F, Depardieu F, Miele S, et al. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 2022; 30 : 740–53. [CrossRef] [PubMed] [Google Scholar]
  21. Vassallo CN, Doering CR, Littlehale ML, et al. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat Microbiol 2022; 7 : 1568–79. [CrossRef] [PubMed] [Google Scholar]
  22. Payne LJ, Todeschini TC, Wu Y, et al. Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types. Nucleic Acids Res 2021; 49 : 10868–78. [CrossRef] [PubMed] [Google Scholar]
  23. Bernheim A, Millman A, Ofir G, et al. Prokaryotic viperins produce diverse antiviral molecules. Nature 2021; 589 : 120–4. [CrossRef] [PubMed] [Google Scholar]
  24. Tal N, Sorek R. SnapShot: Bacterial immunity. Cell 2022; 185 : 578.e1. [Google Scholar]
  25. Georjon H, Tesson F, Shomar H, et al. Genomic characterization of the antiviral arsenal of Actinobacteria. 2023; 2023,03.30.534 874. [Google Scholar]
  26. Millman A, Melamed S, Amitai G, et al. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat Microbiol 2020; 5 : 1608–15. [CrossRef] [PubMed] [Google Scholar]
  27. Cohen D, Melamed S, Millman A, et al. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 2019; 574 : 691–5. [CrossRef] [PubMed] [Google Scholar]
  28. Millman A, Bernheim A, Stokar-Avihail A, et al. Bacterial retrons function in anti-phage defense. Cell 2020; 183 : 1551–61.e12. [CrossRef] [PubMed] [Google Scholar]
  29. Lopatina A, Tal N, Sorek R. Abortive Infection: Bacterial Suicide as an Antiviral Immune Strategy. Annu Rev Virol 2020; 7 : 371–84. [CrossRef] [PubMed] [Google Scholar]
  30. LeRoux M, Laub MT. Toxin-Antitoxin Systems as Phage Defense Elements. Annu Rev Microbiol 2022; 76 : 21–43. [CrossRef] [PubMed] [Google Scholar]
  31. LeRoux M, Srikant S, Teodoro GIC, et al. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat Microbiol 2022; 7 : 1028–40. [CrossRef] [PubMed] [Google Scholar]
  32. Garb J, Lopatina A, Bernheim A, et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD + depletion. Nat Microbiol 2022; 7 : 1849–56. [CrossRef] [PubMed] [Google Scholar]
  33. Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol 2020; 18 : 113–9. [CrossRef] [PubMed] [Google Scholar]
  34. Piel D, Bruto M, Labreuche Y, et al. Phage-host coevolution in natural populations. Nat Microbiol 2022; 7 : 1075–86. [CrossRef] [PubMed] [Google Scholar]
  35. Rousset F, Yirmiya E, Nesher S, et al. A conserved family of immune effectors cleaves cellular ATP upon viral infection. https://doi.org/10.1101/2023.01.24.525353. [Google Scholar]
  36. Maguin P, Varble A, Modell JW, et al. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response. Molecular Cell 2022; 82 : 907–19.e7. [CrossRef] [PubMed] [Google Scholar]
  37. Ofir G, Herbst E, Baroz M, et al. Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature 2021; 600 : 116–20. [CrossRef] [PubMed] [Google Scholar]
  38. Wein T, Sorek R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat Rev Immunol 2022; 22 : 629–38. [CrossRef] [PubMed] [Google Scholar]
  39. Cury J, Mordret E, Trejo VH, et al. Conservation of antiviral systems across domains of life reveals novel immune mechanisms in humans. https://www.biorxiv.org/content/10.1101/2022.12.12.520048v1. [Google Scholar]
  40. Jordan B. CRISPR : le Nobel, enfin… Med Sci (Paris) 2021; 37 : 77–80. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.