Open Access
Issue
Med Sci (Paris)
Volume 39, Number 11, Novembre 2023
Page(s) 869 - 875
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023164
Published online 29 November 2023
  1. OMS, 54e Assemblée mondiale de la Santé. La nutrition chez le nourrisson et le jeune enfant. 2001. https://apps.who.int/gb/ebwha/pdf_files/WHA54/fa54r2.pdf. [Google Scholar]
  2. Chantry AA, Monier I, Marcellin L. Allaitement maternel (partie I): fréquence, bénéfices et inconvénients, durée optimale et facteurs influençant son initiation et sa prolongation. Recommandations pour la pratique clinique. Journal de Gynécologie Obstétrique et Biologie de la. Reproduction 2015 ; 44 : 1071–1079. [Google Scholar]
  3. Arslanoglu S, Corpeleijn W, Moro G, et al. Donor Human Milk for Preterm Infants : Current Evidence and Research Directions. J Pediatr Gastroenterol Nutr 2013 ; 57 : 535–542. [CrossRef] [PubMed] [Google Scholar]
  4. Harding JE, Cormack BE, Alexander T, et al. Advances in nutrition of the newborn infant. Lancet 2017 ; 389 : 1660–1668. [CrossRef] [PubMed] [Google Scholar]
  5. Ray C, Kerketta JA, Rao S, et al. Human Milk Oligosaccharides : The Journey Ahead. Int J Pediatr 2019 ; 2019 : 2390240. [PubMed] [Google Scholar]
  6. Hill DR, Chow JM, Buck RH. Multifunctional Benefits of Prevalent HMOs : Implications for Infant Health. Nutrients 2021; 13 : 3364. [CrossRef] [PubMed] [Google Scholar]
  7. Hundshammer C, Minge O. In Love with Shaping You — Influential Factors on the Breast Milk Content of Human Milk Oligosaccharides and Their Decisive Roles for Neonatal Development. Nutrients 2020; 12 : 3568. [CrossRef] [PubMed] [Google Scholar]
  8. Jantscher-Krenn E, Aigner J, Reiter B, et al. Evidence of human milk oligosaccharides in maternal circulation already during pregnancy : a pilot study. Am J Physiol Endocrinol Metab 2019 ; 316 : E347–E357. [CrossRef] [PubMed] [Google Scholar]
  9. Wise A, Robertson B, Choudhury B, et al. Infants Are Exposed to Human Milk Oligosaccharides Already in utero. Front Pediatr 2018 ; 6 : 270. [CrossRef] [PubMed] [Google Scholar]
  10. Thomson P, Medina DA, Garrido D. Human milk oligosaccharides and infant gut bifidobacteria : Molecular strategies for their utilization. Food Microbiol 2018 ; 75 : 37–46. [CrossRef] [PubMed] [Google Scholar]
  11. Hao H, Zhu L, Faden HS. The milk-based diet of infancy and the gut microbiome. Gastroenterol Rep 2019 ; 7 : 246–249. [CrossRef] [Google Scholar]
  12. Zhang S, Li T, Xie J, et al. Gold standard for nutrition : a review of human milk oligosaccharide and its effects on infant gut microbiota. Microb Cell Fact 2021; 20 : 108. [CrossRef] [PubMed] [Google Scholar]
  13. Yu Z-T, Chen C, Newburg DS. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 2013 ; 23 : 1281–1292. [CrossRef] [Google Scholar]
  14. El-Hawiet A, Kitova EN, Klassen J.-S. Recognition of human milk oligosaccharides by bacterial exotoxins. Glycobiology 2015; 25 : 845–54. [CrossRef] [PubMed] [Google Scholar]
  15. Chen P, Reiter T, Huang B, et al. Prebiotic Oligosaccharides Potentiate Host Protective Responses against L. Monocytogenes Infection. Pathogens 2017 ; 6 : 68. [Google Scholar]
  16. Ackerman DL, Doster RS, Weitkamp J-H, et al. Human Milk Oligosaccharides Exhibit Antimicrobial and Anti-Biofilm Properties Against Group B Streptococcus. Infect Dis 2017 ; 3 : 595–605. [Google Scholar]
  17. Andreas NJ, Al-Khalidi A, Jaiteh M, et al. Role of human milk oligosaccharides in Group B Streptococcus colonisation. Clin Transl Immunology 2016 ; 5 : e99. [CrossRef] [PubMed] [Google Scholar]
  18. Ramani S, Stewart CJ, Laucirica DR, et al. Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nat Commun 2018 ; 9 : 5010. [CrossRef] [PubMed] [Google Scholar]
  19. Laucirica DR, Triantis V, Schoemaker R, et al. Milk Oligosaccharides Inhibit Human Rotavirus Infectivity in MA104 Cells. J Nutr 2017 ; 147 : 1709–1714. [CrossRef] [PubMed] [Google Scholar]
  20. Greenberg RG, Benjamin DK. Neonatal candidiasis : diagnosis, prevention, and treatment. J Infect 2014 ; 69 : S19–S22. [CrossRef] [PubMed] [Google Scholar]
  21. Jantscher-Krenn E, Lauwaet T, Bliss LA, et al. Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Br J Nutr 2012; 108 : 1839–46. [CrossRef] [PubMed] [Google Scholar]
  22. Kong C, Elderman M, Cheng L, et al. Modulation of Intestinal Epithelial Glycocalyx Development by Human Milk Oligosaccharides and Non Digestible Carbohydrates. Mol Nutr Food Res 2019 ; 63 : 1900303. [CrossRef] [PubMed] [Google Scholar]
  23. Kavanaugh D, O’Callaghan J, Kilcoyne M, et al. The intestinal glycome and its modulation by diet and nutrition. Nutr Rev 2015 ; 73 : 359–375. [CrossRef] [PubMed] [Google Scholar]
  24. Holscher HD, Davis SR, Tappenden KA. Human Milk Oligosaccharides Influence Maturation of Human Intestinal Caco-2Bbe and HT-29 Cell Lines12. J Nutr 2014 ; 144 : 586–591. [CrossRef] [PubMed] [Google Scholar]
  25. Chichlowski M, De Lartigue G, German JB, et al. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr 2012 ; 55 : 321–327. [CrossRef] [PubMed] [Google Scholar]
  26. Wu RY, Li B, Koike Y, et al. Human Milk Oligosaccharides Increase Mucin Expression in Experimental Necrotizing Enterocolitis. Mol Nutr Food Res 2019 ; 63 : 1800658. [CrossRef] [Google Scholar]
  27. Holscher HD, Bode L, Tappenden KA. Human Milk Oligosaccharides Influence Intestinal Epithelial Cell Maturation In Vitro. J Pediatr Gastroenterol Nutr 2017 ; 64 : 296–301. [CrossRef] [PubMed] [Google Scholar]
  28. Newburg DS, Walker WA. Protection of the Neonate by the Innate Immune System of Developing Gut and of Human Milk. Pediatr Res 2007; 61 : 2–8. [CrossRef] [PubMed] [Google Scholar]
  29. Eiwegger T, Stahl B, Schmitt J, et al. Human Milk-Derived Oligosaccharides and Plant-Derived Oligosaccharides Stimulate Cytokine Production of Cord Blood T-Cells In Vitro. Pediatr Res 2004 ; 56 : 536–540. [CrossRef] [PubMed] [Google Scholar]
  30. Kim J, Kim Y-J, Kim JW. Bacterial Clearance Is Enhanced by 2,3- and 2,6-Sialyllactose via Receptor-Mediated Endocytosis and Phagocytosis. Infect Immun 2018 ; 87 : e00694–e00618. [PubMed] [Google Scholar]
  31. Ha S-H, Kwak C-H, Park J-Y, et al. 3-sialyllactose targets cell surface protein, SIGLEC-3, and induces megakaryocyte differentiation and apoptosis by lipid raft-dependent endocytosis. Glycoconj J 2020; 37 : 187–200. [CrossRef] [PubMed] [Google Scholar]
  32. Bohari MH, Yu X, Zick Y, et al. Structure-based rationale for differential recognition of lacto- and neolacto- series glycosphingolipids by the N-terminal domain of human galectin-8. Sci Rep 2016; 6 : 39556. [CrossRef] [PubMed] [Google Scholar]
  33. Noll AJ, Yu Y, Lasanajak Y, et al. Human DC-SIGN Binds Specific Human Milk Glycans. Biochem J 2016 ; 473 : 1343–1353. [CrossRef] [PubMed] [Google Scholar]
  34. Kurakevich E, Hennet T, Hausmann M, et al. Milk oligosaccharide sialyl (2,3) lactose activates intestinal CD11c + cells through TLR4. Proc Natl Acad Sci U S A 2013 ; 110 : 17444–17449. [CrossRef] [PubMed] [Google Scholar]
  35. Azagra-Boronat I, Massot-Cladera M, Mayneris-Perxachs J, et al. Immunomodulatory and Prebiotic Effects of 2-Fucosyllactose in Suckling Rats. Front Immunol 2019 ; 10 : 1773. [CrossRef] [PubMed] [Google Scholar]
  36. Castillo-Courtade L, Han S, Lee S, et al. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy 2015 ; 70 : 1091–1102. [CrossRef] [PubMed] [Google Scholar]
  37. Zehra S, Khambati I, Vierhout M, et al. Human Milk Oligosaccharides Attenuate Antigen-Antibody Complex Induced Chemokine Release from Human Intestinal Epithelial Cell Lines. J Food Sci 2018 ; 83 : 499–508. [CrossRef] [PubMed] [Google Scholar]
  38. Marriage BJ, Buck RH, Goehring KC, et al. Infants Fed a Lower Calorie Formula With 2 FL Show Growth and 2 FL Uptake Like Breast-Fed Infants. J Pediatr Gastroenterol Nutr 2015 ; 61 : 649–658. [CrossRef] [PubMed] [Google Scholar]
  39. Lodge CJ, Lowe AJ, Milanzi E, et al. Human milk oligosaccharide profiles and allergic disease up to 18 years. J Allergy Clin Immunol 2021; 147 : 1041–8. [CrossRef] [PubMed] [Google Scholar]
  40. Bode L, Rudloff S, Kunz C, et al. Human milk oligosaccharides reduce platelet-neutrophil complex formation leading to a decrease in neutrophil 2 integrin expression. J Leukoc Biol 2004 ; 76 : 820–826. [CrossRef] [PubMed] [Google Scholar]
  41. Bode L, Kunz C, Muhly-Reinholz M, et al. Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides. Thromb Haemost 2004 ; 92 : 1402–1410. [CrossRef] [PubMed] [Google Scholar]
  42. Duska-McEwen G Senft apr., Ruetschilling TL, et al. Human Milk Oligosaccharides Enhance Innate Immunity to Respiratory Syncytial Virus and Influenza in Vitro. Food and Nutrition Sciences 2014 ; 5 : 1387–1398. [CrossRef] [Google Scholar]
  43. Zenhom M, Hyder A, de Vrese M, et al. Prebiotic Oligosaccharides Reduce Proinflammatory Cytokines in Intestinal Caco-2 Cells via Activation of PPAR and Peptidoglycan Recognition Protein 31–3. J Nutr 2011 ; 141 : 971–977. [CrossRef] [PubMed] [Google Scholar]
  44. Kang L, Kwon E, Lee KM, et al. 3 Sialyllactose as an inhibitor of p65 phosphorylation ameliorates the progression of experimental rheumatoid arthritis. Br J Pharmacol 2018 ; 175 : 4295–4309. [CrossRef] [PubMed] [Google Scholar]
  45. Sodhi CP, Wipf P, Yamaguchi Y, et al. The human milk oligosaccharides 2’-Fucosyllactose and 6’-Sialyllactose protect against the development of necrotizing enterocolitis by inhibiting Toll-Like Receptor 4 signaling. Pediatr Res 2021; 89 : 91–101. [CrossRef] [PubMed] [Google Scholar]
  46. Good M, Sodhi CP, Yamaguchi Y, et al. The human milk oligosaccharide 2’-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. Br J Nutr 2016 ; 116 : 1175–1187. [CrossRef] [PubMed] [Google Scholar]
  47. Mortensen EL, Michaelsen KF, Sanders SA, et al. The Association Between Duration of Breastfeeding and Adult Intelligence. JAMA 2002 ; 287 : 2365–2371. [CrossRef] [PubMed] [Google Scholar]
  48. Oliveros E, Ramirez M, Vazquez E, et al. Oral supplementation of 2’-fucosyllactose during lactation improves memory and learning in rats. J Nutr Biochem 2016 ; 31 : 20–27. [CrossRef] [PubMed] [Google Scholar]
  49. Oliveros E, Martin M, Torres-Espinola FJ, et al. Human Milk Levels of 2’-Fucosyllactose and 6’-Sialyllactose are Positively Associated with Infant Neurodevelopment and are Not Impacted by Maternal BMI or Diabetic Status. J Nutr Food Sci 2021; 4 : 024. [Google Scholar]
  50. Jorgensen JM, Young R, Ashorn P, et al. Associations of human milk oligosaccharides and bioactive proteins with infant growth and development among Malawian mother-infant dyads. Am J Clin Nutr 2020; 113 : 209–20. [Google Scholar]
  51. Jacobi SK, Yatsunenko T, Li D, et al. Dietary Isomers of Sialyllactose Increase Ganglioside Sialic Acid Concentrations in the Corpus Callosum and Cerebellum and Modulate the Colonic Microbiota of Formula-Fed Piglets 1, 2, 3. J Nutr 2016 ; 146 : 200–208. [CrossRef] [PubMed] [Google Scholar]
  52. Mudd AT, Fleming SA, Labhart B, et al. Dietary Sialyllactose Influences Sialic Acid Concentrations in the Prefrontal Cortex and Magnetic Resonance Imaging Measures in Corpus Callosum of Young Pigs. Nutrients 2017 ; 9 : 1297. [CrossRef] [PubMed] [Google Scholar]
  53. Wang HX, Chen Y, Haque Z, et al. Sialylated milk oligosaccharides alter neurotransmitters and brain metabolites in piglets : an In vivo magnetic resonance spectroscopic (MRS) study. Nutr Neurosci 2021; 24 : 885–95. [CrossRef] [PubMed] [Google Scholar]
  54. Oliveros E, Vázquez E, Barranco A, et al. Sialic Acid and Sialylated Oligosaccharide Supplementation during Lactation Improves Learning and Memory in Rats. Nutrients 2018 ; 10 : 1519. [CrossRef] [PubMed] [Google Scholar]
  55. Berger PK, Ong ML, Bode L, Belfort MB. Human Milk Oligosaccharides and Infant Neurodevelopment : A Narrative Review. Nutrients 2023; 15 : 719. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.