Open Access
Issue
Med Sci (Paris)
Volume 39, Number 8-9, Août–Septembre 2023
Page(s) 625 - 631
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023096
Published online 11 September 2023
  1. Strambio-De-Castillia C, Niepel M, Rout MP. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat rev Mol cell biol 2010 ; 11 : 490–501. [CrossRef] [PubMed] [Google Scholar]
  2. Dargemont C. Export nucléaire des protéines et homéostasie cellulaire. Med Sci (Paris) 2002 ; 18 : 1237–44. [CrossRef] [EDP Sciences] [Google Scholar]
  3. Fabre E. Pore nucléaire et organization fonctionnelle de la chromatine. Med Sci (Paris) 2006 ; 22 : 483–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Zila V, Margiotta E, Turonˇová B, et al. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell 2021 ; 184 : 1032–46.e18. [CrossRef] [PubMed] [Google Scholar]
  5. Kau TR, Way JC, Silver PA. Nuclear transport and cancer: From mechanism to intervention. Nature Rev Cancer 2004 ; 4. [Google Scholar]
  6. Kim SJ, Fernandez-Martinez J, Nudelman I, et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature 2018 ; 555 : 475–82. [CrossRef] [PubMed] [Google Scholar]
  7. Appen A von, Kosinski J, Sparks L, et al. In situ structural analysis of the human nuclear pore complex. Nature 2015 ; 526 : 140–3. [CrossRef] [PubMed] [Google Scholar]
  8. Eibauer M, Pellanda M, Turgay Y, et al. Structure and gating of the nuclear pore complex. Nat Comm 2015 ; 6 : 7532. [CrossRef] [Google Scholar]
  9. Akey CW, Singh D, Ouch C, et al. Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell 2022 ; 185 : 361–378.e25. [CrossRef] [PubMed] [Google Scholar]
  10. Zimmerli CE, Allegretti M, Rantos V, et al. Nuclear pores dilate and constrict in cellulo. Science 2021 ; 374. [Google Scholar]
  11. Wente SR, Rout MP. The Nuclear Pore Complex and Nuclear Transport. Cold Spring Harb Perspect Biol 2010 ; 2 : a000562. [CrossRef] [PubMed] [Google Scholar]
  12. Raveh B, Karp JM, Sparks S, et al. Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex. Proc Natl Acad Sci U S A 2016 ; 113(18):E2489-97. [CrossRef] [PubMed] [Google Scholar]
  13. Zilman A, Talia S Di, Chait BT, et al. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput Biol 2007 ; 3 : 1281–90. [Google Scholar]
  14. Frenkiel-Krispin D, Maco B, Aebi U, et al. Structural Analysis of a Metazoan Nuclear Pore Complex Reveals a Fused Concentric Ring Architecture. J Mol Biol 2010 ; 395 : 578–86. [CrossRef] [PubMed] [Google Scholar]
  15. Capelson M, Hetzer MW. The role of nuclear pores in gene regulation, development and disease. EMBO Rep 2009 ; 10 : 934. [CrossRef] [Google Scholar]
  16. Sellés J, Penrad-Mobayed M, Guillaume C, et al. Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy. Sci Rep 2017 ; 7 : 14732. [CrossRef] [PubMed] [Google Scholar]
  17. Akey CW. Structural plasticity of the nuclear pore complex. J Mol Biol 1995 ; 248 : 273–93. [PubMed] [Google Scholar]
  18. Grossman E, Medalia O, Zwerger M. Functional architecture of the nuclear pore complex. Annu Rev Biophys 2012 ; 41 : 557–84. [CrossRef] [PubMed] [Google Scholar]
  19. Akey CW. Structural plasticity of the nuclear pore complex. J Mol Biol 1995 ; 248 : 273–93. [PubMed] [Google Scholar]
  20. Niño CA, Guet D, Gay A, et al. Posttranslational marks control architectural and functional plasticity of the nuclear pore complex basket. J Cell Biol 2016 ; 212 : 167–80. [CrossRef] [PubMed] [Google Scholar]
  21. Kumar A, Sharma P, Gomar-Alba M, et al. Daughter-cell-specific modulation of nuclear pore complexes controls cell cycle entry during asymmetric division. Nat Cell Biol 2018 ; 20 : 432–42 [CrossRef] [PubMed] [Google Scholar]
  22. Hinshaw JE, Milligan RA. Nuclear pore complexes exceeding eightfold rotational symmetry. J Struct Biol 2003 ; 141 : 259–68. [CrossRef] [PubMed] [Google Scholar]
  23. Stanley GJ, Fassati A, Hoogenboom BW. Atomic force microscopy reveals structural variability amongst nuclear pore complexes. Life Sci Alliance 2018 ; 1 : e201800142. [CrossRef] [PubMed] [Google Scholar]
  24. Löschberger A, Franke C, Krohne G, et al. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J Cell Sci 2014 ; 127 : 4351–5. [PubMed] [Google Scholar]
  25. Goldberg MW, Wiese C, Allen TD, et al. Dimples, pores, star-rings, and thin rings on growing nuclear envelopes: evidence for structural intermediates in nuclear pore complex assembly. J Cell Sci 1997 ; 110 : 409–20. [CrossRef] [PubMed] [Google Scholar]
  26. Elosegui-Artola A, Andreu I, Beedle AEM, et al. Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores. Cell 2017 ; 171 : 1397–410.e14. [CrossRef] [PubMed] [Google Scholar]
  27. Andreu I, Granero-Moya I, Chahare NR, et al. Mechanical force application to the nucleus regulates nucleocytoplasmic transport. Nat Cell Biol 2022 ; 24 : 896–905. [CrossRef] [PubMed] [Google Scholar]
  28. Schoch RL, Kapinos LE, Lim RYH. Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes. Proc Natl Acad Sci U S A 2012 ; 109 : 16911–6. [CrossRef] [PubMed] [Google Scholar]
  29. Kapinos LE, Schoch RL, Wagner RS, et al. Karyopherin-Centric Control of Nuclear Pores Based on Molecular Occupancy and Kinetic Analysis of Multivalent Binding with FG Nucleoporins. Biophys J 2014 ; 106 : 1751–62. [CrossRef] [PubMed] [Google Scholar]
  30. Zahn R, Osmanovic´ D, Ehret S, et al. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies. eLife 2016 ; 5. [Google Scholar]
  31. Vovk A, Gu C, Opferman MG, et al. Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the nuclear pore complex. eLife 2016 ; 5. [Google Scholar]
  32. Paci G, Zheng T, Caria J, et al. Molecular determinants of large cargo transport into the nucleus. eLife 2020 ; 9 : 1–24. [CrossRef] [Google Scholar]
  33. Caria J, Paci G, Zheng T, et al. Molecular Determinants of Large Cargo Transport into the Nucleus. Biophys J 2020 ; 118 : 342a. [CrossRef] [Google Scholar]
  34. Arhel NJ. La capside du virus de l’immunodéficience humaine au centre d’un engouement sans précédent. Med Sci (Paris) 2021 ; 37 : 549–52. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Lupu F, Alves A, Anderson K, et al. Nuclear Pore Composition Regulates Neural Stem/Progenitor Cell Differentiation in the Mouse Embryo. Dev Cell 2008 ; 14 : 831–42. [CrossRef] [PubMed] [Google Scholar]
  36. Zhang X, Chen S, Yoo S, et al. Mutation in Nuclear Pore Component NUP155 Leads to Atrial Fibrillation and Early Sudden Cardiac Death. Cell 2008 ; 135 : 1017–27. [CrossRef] [PubMed] [Google Scholar]
  37. Fallini C, Khalil B, Smith CL, et al. Traffic jam at the nuclear pore: All roads lead to nucleocytoplasmic transport defects in ALS/FTD. Neurobiol Dis 2020 ; 140. [Google Scholar]
  38. Ryan KM, Phillips AC, Vousden KH. Regulation and function of the p53 tumor suppressor protein. Curr Op Cell Biol 2001 ; 13 : 332–7. [CrossRef] [Google Scholar]
  39. Belin S, Beghin A, Solano-Gonzàlez E, et al. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS ONE 2009 ; 4 : e7147. [CrossRef] [PubMed] [Google Scholar]
  40. Suh EK, Gumbiner BM. Translocation of β-catenin into the nucleus independent of interactions with FG-rich nucleoporins. Exp Cell Res 2003 ; 290 : 447–56. [CrossRef] [PubMed] [Google Scholar]
  41. Fagotto F, Glück U, Gumbiner BM. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr Biol 1998 ; 8 : 181–90. [CrossRef] [PubMed] [Google Scholar]
  42. Tomiyasu T, Sasaki M, Kondo K, et al. Chromosome banding studies in 106 cases of chronic myelogenous leukemia. Jinrui Idengaku Zasshi 1982 ; 27 : 243–58. [CrossRef] [PubMed] [Google Scholar]
  43. Borrow J, Shearman AM, Stanton VP, et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 1996 ; 12 : 159–67. [CrossRef] [PubMed] [Google Scholar]
  44. Nakamura T, Largaespada DA, Lee MP, et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996 ; 12 : 154–8. [CrossRef] [PubMed] [Google Scholar]
  45. Kasper LH, Brindle PK, Schnabel CA, et al. CREB Binding Protein Interacts with Nucleoporin-Specific FG Repeats That Activate Transcription and Mediate NUP98-HOXA9 Oncogenicity. Mol Cell Biol 1999 ; 19 : 764–76. [CrossRef] [PubMed] [Google Scholar]
  46. Saito S, Miyaji-Yamaguchi M, Nagata K. Aberrant intracellular localization of set-can fusion protein, associated with a leukemia, disorganizes nuclear export. Int J Cancer 2004 ; 111 : 501–7. [CrossRef] [PubMed] [Google Scholar]
  47. Slape C, Aplan PD. The role of NUP98 gene fusions in hematologic malignancy. Leuk Lymphoma 2004 ; 45 : 1341–50. [CrossRef] [PubMed] [Google Scholar]
  48. Ghannam G, Takeda A, Camarata T, et al. The Oncogene Nup98-HOXA9 Induces Gene Transcription in Myeloid Cells. J Biol Chem 2004 ; 279 : 866–75. [CrossRef] [PubMed] [Google Scholar]
  49. Takeda A, Goolsby C, Yaseen NR. NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Res 2006 ; 66 : 6628–37. [CrossRef] [PubMed] [Google Scholar]
  50. Wang GG, Cai L, Pasillas MP, et al. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 2007 ; 9 : 804–12. [CrossRef] [PubMed] [Google Scholar]
  51. Catez F, Dalla Venezia N, Marcel V, et al. Ribosome biogenesis: An emerging druggable pathway for cancer therapeutics. Biochem Pharmacol 2019 ; 159 : 74–81. [CrossRef] [PubMed] [Google Scholar]
  52. Hoogenboom BW, Hough LE, Lemke EA, et al. Physics of the nuclear pore complex: Theory, modeling and experiment. Physics Rep 2021 ; 921 : 1–53. [CrossRef] [Google Scholar]
  53. Zilman A, Talia S Di, Jovanovic-Talisman T, et al. Enhancement of transport selectivity through nano-channels by non-specific competition. PLoS Comput Biol 2010 ; 6 : e1000804. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.