Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 8-9, Août–Septembre 2023
Page(s) 625 - 631
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023096
Publié en ligne 11 septembre 2023
  1. Strambio-De-Castillia C, Niepel M, Rout MP. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat rev Mol cell biol 2010 ; 11 : 490–501. [CrossRef] [PubMed] [Google Scholar]
  2. Dargemont C. Export nucléaire des protéines et homéostasie cellulaire. Med Sci (Paris) 2002 ; 18 : 1237–44. [CrossRef] [EDP Sciences] [Google Scholar]
  3. Fabre E. Pore nucléaire et organization fonctionnelle de la chromatine. Med Sci (Paris) 2006 ; 22 : 483–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Zila V, Margiotta E, Turonˇová B, et al. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell 2021 ; 184 : 1032–46.e18. [CrossRef] [PubMed] [Google Scholar]
  5. Kau TR, Way JC, Silver PA. Nuclear transport and cancer: From mechanism to intervention. Nature Rev Cancer 2004 ; 4. [Google Scholar]
  6. Kim SJ, Fernandez-Martinez J, Nudelman I, et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature 2018 ; 555 : 475–82. [CrossRef] [PubMed] [Google Scholar]
  7. Appen A von, Kosinski J, Sparks L, et al. In situ structural analysis of the human nuclear pore complex. Nature 2015 ; 526 : 140–3. [CrossRef] [PubMed] [Google Scholar]
  8. Eibauer M, Pellanda M, Turgay Y, et al. Structure and gating of the nuclear pore complex. Nat Comm 2015 ; 6 : 7532. [CrossRef] [Google Scholar]
  9. Akey CW, Singh D, Ouch C, et al. Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell 2022 ; 185 : 361–378.e25. [CrossRef] [PubMed] [Google Scholar]
  10. Zimmerli CE, Allegretti M, Rantos V, et al. Nuclear pores dilate and constrict in cellulo. Science 2021 ; 374. [Google Scholar]
  11. Wente SR, Rout MP. The Nuclear Pore Complex and Nuclear Transport. Cold Spring Harb Perspect Biol 2010 ; 2 : a000562. [CrossRef] [PubMed] [Google Scholar]
  12. Raveh B, Karp JM, Sparks S, et al. Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex. Proc Natl Acad Sci U S A 2016 ; 113(18):E2489-97. [CrossRef] [PubMed] [Google Scholar]
  13. Zilman A, Talia S Di, Chait BT, et al. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput Biol 2007 ; 3 : 1281–90. [Google Scholar]
  14. Frenkiel-Krispin D, Maco B, Aebi U, et al. Structural Analysis of a Metazoan Nuclear Pore Complex Reveals a Fused Concentric Ring Architecture. J Mol Biol 2010 ; 395 : 578–86. [CrossRef] [PubMed] [Google Scholar]
  15. Capelson M, Hetzer MW. The role of nuclear pores in gene regulation, development and disease. EMBO Rep 2009 ; 10 : 934. [CrossRef] [Google Scholar]
  16. Sellés J, Penrad-Mobayed M, Guillaume C, et al. Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy. Sci Rep 2017 ; 7 : 14732. [CrossRef] [PubMed] [Google Scholar]
  17. Akey CW. Structural plasticity of the nuclear pore complex. J Mol Biol 1995 ; 248 : 273–93. [PubMed] [Google Scholar]
  18. Grossman E, Medalia O, Zwerger M. Functional architecture of the nuclear pore complex. Annu Rev Biophys 2012 ; 41 : 557–84. [CrossRef] [PubMed] [Google Scholar]
  19. Akey CW. Structural plasticity of the nuclear pore complex. J Mol Biol 1995 ; 248 : 273–93. [PubMed] [Google Scholar]
  20. Niño CA, Guet D, Gay A, et al. Posttranslational marks control architectural and functional plasticity of the nuclear pore complex basket. J Cell Biol 2016 ; 212 : 167–80. [CrossRef] [PubMed] [Google Scholar]
  21. Kumar A, Sharma P, Gomar-Alba M, et al. Daughter-cell-specific modulation of nuclear pore complexes controls cell cycle entry during asymmetric division. Nat Cell Biol 2018 ; 20 : 432–42 [CrossRef] [PubMed] [Google Scholar]
  22. Hinshaw JE, Milligan RA. Nuclear pore complexes exceeding eightfold rotational symmetry. J Struct Biol 2003 ; 141 : 259–68. [CrossRef] [PubMed] [Google Scholar]
  23. Stanley GJ, Fassati A, Hoogenboom BW. Atomic force microscopy reveals structural variability amongst nuclear pore complexes. Life Sci Alliance 2018 ; 1 : e201800142. [CrossRef] [PubMed] [Google Scholar]
  24. Löschberger A, Franke C, Krohne G, et al. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J Cell Sci 2014 ; 127 : 4351–5. [PubMed] [Google Scholar]
  25. Goldberg MW, Wiese C, Allen TD, et al. Dimples, pores, star-rings, and thin rings on growing nuclear envelopes: evidence for structural intermediates in nuclear pore complex assembly. J Cell Sci 1997 ; 110 : 409–20. [CrossRef] [PubMed] [Google Scholar]
  26. Elosegui-Artola A, Andreu I, Beedle AEM, et al. Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores. Cell 2017 ; 171 : 1397–410.e14. [CrossRef] [PubMed] [Google Scholar]
  27. Andreu I, Granero-Moya I, Chahare NR, et al. Mechanical force application to the nucleus regulates nucleocytoplasmic transport. Nat Cell Biol 2022 ; 24 : 896–905. [CrossRef] [PubMed] [Google Scholar]
  28. Schoch RL, Kapinos LE, Lim RYH. Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes. Proc Natl Acad Sci U S A 2012 ; 109 : 16911–6. [CrossRef] [PubMed] [Google Scholar]
  29. Kapinos LE, Schoch RL, Wagner RS, et al. Karyopherin-Centric Control of Nuclear Pores Based on Molecular Occupancy and Kinetic Analysis of Multivalent Binding with FG Nucleoporins. Biophys J 2014 ; 106 : 1751–62. [CrossRef] [PubMed] [Google Scholar]
  30. Zahn R, Osmanovic´ D, Ehret S, et al. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies. eLife 2016 ; 5. [Google Scholar]
  31. Vovk A, Gu C, Opferman MG, et al. Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the nuclear pore complex. eLife 2016 ; 5. [Google Scholar]
  32. Paci G, Zheng T, Caria J, et al. Molecular determinants of large cargo transport into the nucleus. eLife 2020 ; 9 : 1–24. [CrossRef] [Google Scholar]
  33. Caria J, Paci G, Zheng T, et al. Molecular Determinants of Large Cargo Transport into the Nucleus. Biophys J 2020 ; 118 : 342a. [CrossRef] [Google Scholar]
  34. Arhel NJ. La capside du virus de l’immunodéficience humaine au centre d’un engouement sans précédent. Med Sci (Paris) 2021 ; 37 : 549–52. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Lupu F, Alves A, Anderson K, et al. Nuclear Pore Composition Regulates Neural Stem/Progenitor Cell Differentiation in the Mouse Embryo. Dev Cell 2008 ; 14 : 831–42. [CrossRef] [PubMed] [Google Scholar]
  36. Zhang X, Chen S, Yoo S, et al. Mutation in Nuclear Pore Component NUP155 Leads to Atrial Fibrillation and Early Sudden Cardiac Death. Cell 2008 ; 135 : 1017–27. [CrossRef] [PubMed] [Google Scholar]
  37. Fallini C, Khalil B, Smith CL, et al. Traffic jam at the nuclear pore: All roads lead to nucleocytoplasmic transport defects in ALS/FTD. Neurobiol Dis 2020 ; 140. [Google Scholar]
  38. Ryan KM, Phillips AC, Vousden KH. Regulation and function of the p53 tumor suppressor protein. Curr Op Cell Biol 2001 ; 13 : 332–7. [CrossRef] [Google Scholar]
  39. Belin S, Beghin A, Solano-Gonzàlez E, et al. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS ONE 2009 ; 4 : e7147. [CrossRef] [PubMed] [Google Scholar]
  40. Suh EK, Gumbiner BM. Translocation of β-catenin into the nucleus independent of interactions with FG-rich nucleoporins. Exp Cell Res 2003 ; 290 : 447–56. [CrossRef] [PubMed] [Google Scholar]
  41. Fagotto F, Glück U, Gumbiner BM. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr Biol 1998 ; 8 : 181–90. [CrossRef] [PubMed] [Google Scholar]
  42. Tomiyasu T, Sasaki M, Kondo K, et al. Chromosome banding studies in 106 cases of chronic myelogenous leukemia. Jinrui Idengaku Zasshi 1982 ; 27 : 243–58. [CrossRef] [PubMed] [Google Scholar]
  43. Borrow J, Shearman AM, Stanton VP, et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 1996 ; 12 : 159–67. [CrossRef] [PubMed] [Google Scholar]
  44. Nakamura T, Largaespada DA, Lee MP, et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996 ; 12 : 154–8. [CrossRef] [PubMed] [Google Scholar]
  45. Kasper LH, Brindle PK, Schnabel CA, et al. CREB Binding Protein Interacts with Nucleoporin-Specific FG Repeats That Activate Transcription and Mediate NUP98-HOXA9 Oncogenicity. Mol Cell Biol 1999 ; 19 : 764–76. [CrossRef] [PubMed] [Google Scholar]
  46. Saito S, Miyaji-Yamaguchi M, Nagata K. Aberrant intracellular localization of set-can fusion protein, associated with a leukemia, disorganizes nuclear export. Int J Cancer 2004 ; 111 : 501–7. [CrossRef] [PubMed] [Google Scholar]
  47. Slape C, Aplan PD. The role of NUP98 gene fusions in hematologic malignancy. Leuk Lymphoma 2004 ; 45 : 1341–50. [CrossRef] [PubMed] [Google Scholar]
  48. Ghannam G, Takeda A, Camarata T, et al. The Oncogene Nup98-HOXA9 Induces Gene Transcription in Myeloid Cells. J Biol Chem 2004 ; 279 : 866–75. [CrossRef] [PubMed] [Google Scholar]
  49. Takeda A, Goolsby C, Yaseen NR. NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Res 2006 ; 66 : 6628–37. [CrossRef] [PubMed] [Google Scholar]
  50. Wang GG, Cai L, Pasillas MP, et al. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 2007 ; 9 : 804–12. [CrossRef] [PubMed] [Google Scholar]
  51. Catez F, Dalla Venezia N, Marcel V, et al. Ribosome biogenesis: An emerging druggable pathway for cancer therapeutics. Biochem Pharmacol 2019 ; 159 : 74–81. [CrossRef] [PubMed] [Google Scholar]
  52. Hoogenboom BW, Hough LE, Lemke EA, et al. Physics of the nuclear pore complex: Theory, modeling and experiment. Physics Rep 2021 ; 921 : 1–53. [CrossRef] [Google Scholar]
  53. Zilman A, Talia S Di, Jovanovic-Talisman T, et al. Enhancement of transport selectivity through nano-channels by non-specific competition. PLoS Comput Biol 2010 ; 6 : e1000804. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.