Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 8-9, Août–Septembre 2023
Page(s) 619 - 624
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023095
Publié en ligne 11 septembre 2023
  1. Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009 ; 10 : 445–457. [CrossRef] [PubMed] [Google Scholar]
  2. Mayor R, Etienne-Manneville S. The front and rear of collective cell migration. Nat Rev Mol Cell Biol 2016 ; 17 : 97–109. [CrossRef] [PubMed] [Google Scholar]
  3. Aman A, Piotrowski T. Cell migration during morphogenesis. Dev Biol 2010 ; 341 : 20–33. [CrossRef] [PubMed] [Google Scholar]
  4. Rothenberg KE, Fernandez-Gonzalez R. Forceful closure: cytoskeletal networks in embryonic wound repair. Mol Biol Cell 2019 ; 30 : 1353–1358. [CrossRef] [PubMed] [Google Scholar]
  5. Thiery JP. Metastasis: alone or together?. Curr Biol 2009 ; 19 : R1121–R1123. [CrossRef] [PubMed] [Google Scholar]
  6. Khalil AA, Friedl P. Determinants of leader cells in collective cell migration. Integr Biol (Camb) 2010 ; 2 : 568–574. [CrossRef] [PubMed] [Google Scholar]
  7. Yamamoto A, Doak AE, Cheung KJ. Orchestration of Collective Migration and Metastasis by Tumor Cell Clusters. Annu Rev Pathol 2023; 18 : 231–56. [CrossRef] [PubMed] [Google Scholar]
  8. Aramini B, Masciale V, Arienti C, et al. Cancer Stem Cells (CSCs), Circulating Tumor Cells (CTCs) and Their Interplay with Cancer Associated Fibroblasts (CAFs): A New World of Targets and Treatments. Cancers (Basel) 2022; 14. [PubMed] [Google Scholar]
  9. Stuelten CH, Parent CA, Montell DJ. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 2018 ; 18 : 296–312. [CrossRef] [PubMed] [Google Scholar]
  10. Peercy BE, Starz-Gaiano M. Clustered cell migration: Modeling the model system of Drosophila border cells. Semin Cell Dev Biol 2020; 100 : 167–76. [CrossRef] [PubMed] [Google Scholar]
  11. Montell DJ, Yoon WH, Starz-Gaiano M. Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 2012 ; 13 : 631–645. [CrossRef] [PubMed] [Google Scholar]
  12. Roberto GM, Emery G. Directing with restraint: Mechanisms of protrusion restriction in collective cell migrations. Semin Cell Dev Biol 2022; 129 : 75–81. [CrossRef] [PubMed] [Google Scholar]
  13. Spradling A. Developmental genetics of oogenesis. In: The development of Drosophila melanogaster. Bate M, Martinez Arias A (Eds). NewYork : Cold Spring Harbor, 1993. [Google Scholar]
  14. Silver DL, Montell DJ. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 2001 ; 107 : 831–841. [CrossRef] [PubMed] [Google Scholar]
  15. Cai D, Chen SC, Prasad M, et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 2014 ; 157 : 1146–1159. [CrossRef] [PubMed] [Google Scholar]
  16. Niewiadomska P, Godt D, Tepass U. DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol 1999 ; 144 : 533–547. [CrossRef] [PubMed] [Google Scholar]
  17. Wang H, Guo X, Wang X, et al. Supracellular Actomyosin Mediates Cell-Cell Communication and Shapes Collective Migratory Morphology. iScience 2020; 23 : 101204. [CrossRef] [PubMed] [Google Scholar]
  18. McDonald JA, Pinheiro EM, Montell DJ. PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 2003 ; 130 : 3469–3478. [CrossRef] [PubMed] [Google Scholar]
  19. McDonald JA, Pinheiro EM, Kadlec L, et al. Multiple EGFR ligands participate in guiding migrating border cells. Dev Biol 2006 ; 296 : 94–103. [CrossRef] [PubMed] [Google Scholar]
  20. Dai W, Guo X, Cao Y, et al. Tissue topography steers migrating Drosophila border cells. Science 2020; 370 : 987–90. [CrossRef] [PubMed] [Google Scholar]
  21. Duchek P, Rørth P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 2001 ; 291 : 131–133. [CrossRef] [PubMed] [Google Scholar]
  22. Duchek P, Somogyi K, Jékely G, et al. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 2001 ; 107 : 17–26. [CrossRef] [PubMed] [Google Scholar]
  23. Fernandez-Espartero CH, Ramel D, Farago M, et al. GTP exchange factor Vav regulates guided cell migration by coupling guidance receptor signalling to local Rac activation. J Cell Sci 2013 ; 126 : 2285–2293. [PubMed] [Google Scholar]
  24. Bianco A, Poukkula M, Cliffe A, et al. Two distinct modes of guidance signalling during collective migration of border cells. Nature 2007 ; 448 : 362–365. [CrossRef] [PubMed] [Google Scholar]
  25. Campanale JP, Mondo JA, Montell DJ. A Scribble/Cdep/Rac pathway controls follower-cell crawling and cluster cohesion during collective border-cell migration. Dev Cell 2022; 57 : 2483–96.e4. [CrossRef] [PubMed] [Google Scholar]
  26. Mishra AK, Mondo JA, Campanale JP, Montell DJ. Coordination of protrusion dynamics within and between collectively migrating border cells by myosin II. Mol Biol Cell 2019 ; 30 : 2490–2502. [CrossRef] [PubMed] [Google Scholar]
  27. Aranjuez G, Burtscher A, Sawant K, et al. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue. Mol Biol Cell 2016 ; 27 : 1898–1910. [CrossRef] [PubMed] [Google Scholar]
  28. Chen Y, Kotian N, Aranjuez G, et al. Protein phosphatase 1 activity controls a balance between collective and single cell modes of migration. Elife 2020; 9. [Google Scholar]
  29. Plutoni C, Keil S, Zeledon C, et al. Misshapen coordinates protrusion restriction and actomyosin contractility during collective cell migration. Nat Commun 2019 ; 10 : 3940. [CrossRef] [PubMed] [Google Scholar]
  30. Wang X, He L, Wu YI, et al. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat Cell Biol 2010 ; 12 : 591–597. [CrossRef] [PubMed] [Google Scholar]
  31. Assaker G, Ramel D, Wculek SK, et al. Spatial restriction of receptor tyrosine kinase activity through a polarized endocytic cycle controls border cell migration. Proc Natl Acad Sci U S A 2010 ; 107 : 22558–22563. [CrossRef] [PubMed] [Google Scholar]
  32. Ramel D, Wang X, Laflamme C, et al. Rab11 regulates cell-cell communication during collective cell movements. Nat Cell Biol 2013 ; 15 : 317–324. [CrossRef] [PubMed] [Google Scholar]
  33. Jékely G, Sung HH, Luque CM, Rørth P. Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev Cell 2005 ; 9 : 197–207. [CrossRef] [PubMed] [Google Scholar]
  34. Janssens K, Sung HH, Rørth P. Direct detection of guidance receptor activity during border cell migration. Proc Natl Acad Sci U S A 2010 ; 107 : 7323–7328. [CrossRef] [PubMed] [Google Scholar]
  35. Laflamme C, Assaker G, Ramel D, et al. Evi5 promotes collective cell migration through its Rab-GAP activity. J Cell Biol 2012 ; 198 : 57–67. [CrossRef] [PubMed] [Google Scholar]
  36. Wan P, Wang D, Luo J, et al. Guidance receptor promotes the asymmetric distribution of exocyst and recycling endosome during collective cell migration. Development 2013 ; 140 : 4797–4806. [CrossRef] [PubMed] [Google Scholar]
  37. Colombie N, Choesmel-Cadamuro V, Series J, et al. Non-autonomous role of Cdc42 in cell-cell communication during collective migration. Dev Biol 2017 ; 423 : 12–18. [CrossRef] [PubMed] [Google Scholar]
  38. Zeledon C, Sun X, Plutoni C, Emery G. The ArfGAP Drongo Promotes Actomyosin Contractility during Collective Cell Migration by Releasing Myosin Phosphatase from the Trailing Edge. Cell Rep 2019 ; 28 : 3238–48.e3. [CrossRef] [PubMed] [Google Scholar]
  39. Cobreros-Reguera L, Fernández-Miñán A, Fernández-Espartero CH, et al. The Ste20 kinase misshapen is essential for the invasive behaviour of ovarian epithelial cells in Drosophila. EMBO Rep 2010 ; 11 : 943–949. [CrossRef] [PubMed] [Google Scholar]
  40. Hipfner DR, Keller N, Cohen SM. Slik Sterile-20 kinase regulates Moesin activity to promote epithelial integrity during tissue growth. Genes Dev 2004 ; 18 : 2243–2248. [CrossRef] [PubMed] [Google Scholar]
  41. Carreno S, Kouranti I, Glusman ES, et al. Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. J Cell Biol 2008 ; 180 : 739–746. [CrossRef] [PubMed] [Google Scholar]
  42. Chauhan BK, Lou M, Zheng Y, Lang RA. Balanced Rac1 and RhoA activities regulate cell shape and drive invagination morphogenesis in epithelia. Proc Natl Acad Sci U S A 2011 ; 108 : 18289–18294. [CrossRef] [PubMed] [Google Scholar]
  43. Martin E, Ouellette MH, Jenna S. Rac1/RhoA antagonism defines cell-to-cell heterogeneity during epidermal morphogenesis in nematodes. J Cell Biol 2016 ; 215 : 483–498. [CrossRef] [PubMed] [Google Scholar]
  44. Comunale F, Causeret M, Favard C, et al. Rac1 and RhoA GTPases have antagonistic functions during N-cadherin-dependent cell-cell contact formation in C2C12 myoblasts. Biol Cell 2007 ; 99 : 503–517. [CrossRef] [PubMed] [Google Scholar]
  45. Shoval I, Kalcheim C. Antagonistic activities of Rho and Rac GTPases underlie the transition from neural crest delamination to migration. Dev Dyn 2012 ; 241 : 1155–1168. [CrossRef] [PubMed] [Google Scholar]
  46. Zegers MM, Friedl P. Rho GTPases in collective cell migration. Small GTPases 2014 ; 5 : e28997. [Google Scholar]
  47. Majumder P, Aranjuez G, Amick J, McDonald JA. Par-1 controls myosin-II activity through myosin phosphatase to regulate border cell migration. Curr Biol 2012 ; 22 : 363–372. [CrossRef] [PubMed] [Google Scholar]
  48. Zhou S, Li P, Liu J, et al. Two Rac1 pools integrate the direction and coordination of collective cell migration. Nat Commun 2022; 13 : 6014. [CrossRef] [PubMed] [Google Scholar]
  49. Wang X, Wang H, Liu L, et al. Temporal Coordination of Collective Migration and Lumen Formation by Antagonism between Two Nuclear Receptors. iScience 2020; 23 : 101335. [CrossRef] [PubMed] [Google Scholar]
  50. Manning L, Sheth J, Bridges S, et al. A hormonal cue promotes timely follicle cell migration by modulating transcription profiles. Mech Dev 2017 ; 148 : 56–68. [CrossRef] [PubMed] [Google Scholar]
  51. Miao G, Godt D, Montell DJ. Integration of Migratory Cells into a New Site In Vivo Requires Channel-Independent Functions of Innexins on Microtubules. Dev Cell 2020; 54 : 501–15.e9. [CrossRef] [PubMed] [Google Scholar]
  52. Friedl P, Sahai E, Weiss S, Yamada KM. New dimensions in cell migration. Nat Rev Mol Cell Biol 2012 ; 13 : 743–747. [CrossRef] [PubMed] [Google Scholar]
  53. Haeger A, Wolf K, Zegers MM, Friedl P. Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 2015 ; 25 : 556–566. [CrossRef] [PubMed] [Google Scholar]
  54. Bai Z, Yao Q, Sun Z, et al. Prognostic Value of mRNA Expression of MAP4K Family in Acute Myeloid Leukemia. Technol Cancer Res Treat 2019 ; 18 : 1533033819873927. [PubMed] [Google Scholar]
  55. Gao X, Chen G, Gao C, et al. MAP4K4 is a novel MAPK/ERK pathway regulator required for lung adenocarcinoma maintenance. Mol Oncol 2017 ; 11 : 628–639. [CrossRef] [PubMed] [Google Scholar]
  56. Gao X, Gao C, Liu G, Hu J. MAP4K4: an emerging therapeutic target in cancer. Cell Biosci 2016 ; 6 : 56. [CrossRef] [PubMed] [Google Scholar]
  57. Kim JW, Berrios C, Kim M, et al. STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells. Elife 2020; 9. [Google Scholar]
  58. Hirozane T, Masuda M, Sugano T, et al. Direct conversion of osteosarcoma to adipocytes by targeting TNIK. JCI Insight 2021; 6. [Google Scholar]
  59. Torres-Ayuso P, An E, Nyswaner KM, et al. TNIK is a therapeutic target in Lung Squamous Cell Carcinoma and regulates FAK activation through Merlin. Cancer Discov 2021; 11 : 1411–23. [CrossRef] [PubMed] [Google Scholar]
  60. Tripolitsioti D, Kumar KS, Neve A, et al. MAP4K4 controlled integrin beta1 activation and c-Met endocytosis are associated with invasive behavior of medulloblastoma cells. Oncotarget 2018 ; 9 : 23220–23236. [CrossRef] [PubMed] [Google Scholar]
  61. Vitorino P, Yeung S, Crow A, et al. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature 2015 ; 519 : 425–430. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.