Open Access
Issue
Med Sci (Paris)
Volume 39, Number 8-9, Août–Septembre 2023
Page(s) 632 - 642
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023097
Published online 11 September 2023
  1. Lacour M, Dutheil S, Tighilet B, et al. Tell me your vestibular deficit, and i’ll tell you how you’ll compensate. Ann NY Acad Sci 2009 ; 1164 : 268–278. [CrossRef] [Google Scholar]
  2. ICVD Consensus Documents. The Barany Society. https://www.thebaranysociety.org/icvd-consensus-documents/. [Google Scholar]
  3. Angelaki DE, Cullen KE. Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 2008 ; 31 : 125–150. [CrossRef] [PubMed] [Google Scholar]
  4. Lacour M, Helmchen C, Vidal P-P. Vestibular compensation: the neuro-otologist’s best friend. J Neurol 2016 ; 263 : 54–64. [CrossRef] [Google Scholar]
  5. Precht W, Shimazu H, Markham CH. A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J Neurophysiol 1966 ; 29 : 996–1010. [CrossRef] [PubMed] [Google Scholar]
  6. Wiener-Vacher SR, Obeid R, Abou-Elew M. Vestibular impairment after bacterial meningitis delays infant posturomotor development. J Pediatr 2012 ; 161 : 246–51.e1. [CrossRef] [PubMed] [Google Scholar]
  7. Arbusow V, Schulz P, Strupp M, et al. Distribution of herpes simplex virus type 1 in human geniculate and vestibular ganglia: implications for vestibular neuritis. Ann Neurol 1999 ; 46 : 416–419. [CrossRef] [PubMed] [Google Scholar]
  8. Perny M, Roccio M, Grandgirard D, et al. The Severity of Infection Determines the Localization of Damage and Extent of Sensorineural Hearing Loss in Experimental Pneumococcal Meningitis. J Neurosci 2016 ; 36 : 7740–7749. [CrossRef] [PubMed] [Google Scholar]
  9. Sung CYW, Seleme MC, Payne S, et al. Virus-induced cochlear inflammation in newborn mice alters auditory function. JCI Insight 2019; 4. [Google Scholar]
  10. Rutka J.. Aminoglycoside Vestibulotoxicity. Adv Otorhinolaryngol 2019 ; 82 : 101–110. [PubMed] [Google Scholar]
  11. Llorens J, Callejo A, Greguske EA, et al. Physiological assesment of vestibular function and toxicity in humans and animals. Neurotoxicology 2018 ; 66 : 204–212. [CrossRef] [PubMed] [Google Scholar]
  12. Callejo A, Durochat A, Bressieux S, et al. Dose-dependent cochlear and vestibular toxicity of trans-tympanic cisplatin in the rat. NeuroToxicology 2017 ; 60. [PubMed] [Google Scholar]
  13. Vignaux G, Chabbert C, Gaboyard-Niay S, et al. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats. Toxicol Appl Pharmacol 2012 ; 258 : 61–71. [CrossRef] [PubMed] [Google Scholar]
  14. Besnard S, Machado M l., Vignaux G, et al. Influence of vestibular input on spatial and nonspatial memory and on hippocampal NMDA receptors. Hippocampus 2012; 22 : 814–26. [CrossRef] [PubMed] [Google Scholar]
  15. Hatat B, Boularand R, Bringuier C, et al. Vertigoheel improves central vestibular compensation after unilateral peripheral vestibulopathy in rats. Front Neurol 2022; 13 : 969047. [CrossRef] [PubMed] [Google Scholar]
  16. Strupp M, Feil K, Dieterich M, et al. Bilateral vestibulopathy. Handb Clin Neurol 2016 ; 137 : 235–240. [CrossRef] [PubMed] [Google Scholar]
  17. Foster CA, Breeze RE. The Meniere attack: an ischemia/reperfusion disorder of inner ear sensory tissues. Med Hypotheses 2013 ; 81 : 1108–1115. [CrossRef] [PubMed] [Google Scholar]
  18. Kim J-S, Newman-Toker DE, Kerber KA, et al. Vascular vertigo and dizziness: Diagnostic criteria. J Vestib Res 2022; 32 : 205–22. [CrossRef] [PubMed] [Google Scholar]
  19. Mom T, Avan P, Bonfils P, et al. A model of cochlear function assessment during reversible ischemia in the Mongolian gerbil. Brain Res Brain Res Protoc 1999 ; 4 : 249–257. [CrossRef] [PubMed] [Google Scholar]
  20. Lee JO, Park S-H, Kim HJ, et al. Vulnerability of the vestibular organs to transient ischemia: implications for isolated vascular vertigo. Neurosci Lett 2014 ; 558 : 180–185. [CrossRef] [PubMed] [Google Scholar]
  21. Cassel R, Bordiga P, Carcaud J, et al. Morphological and functional correlates of vestibular synaptic deafferentation and repair in a mouse model of acute-onset vertigo. Dis Model Mech 2019; 12 : dmm039115. [CrossRef] [PubMed] [Google Scholar]
  22. Hallpike CS, Cairns H. Observations on the Pathology of Ménière’s Syndrome. Proc R Soc Med 1938 ; 31 : 1317–1336. [PubMed] [Google Scholar]
  23. Attyé A, Eliezer M, Medici M, et al. In vivo imaging of saccular hydrops in humans reflects sensorineural hearing loss rather than Meniere’s disease symptoms. Eur Radiol 2018 ; 28 : 2916–2922. [CrossRef] [PubMed] [Google Scholar]
  24. Chabbert C, Charpiot A. Proceedings of the GDR Vertige 2019 annual meeting devoted to endolymphatic hydrops. J Vestib Res 2021; 31 : 243–5. [CrossRef] [PubMed] [Google Scholar]
  25. Salt AN, Plontke SK. Endolymphatic hydrops: pathophysiology and experimental models. Otolaryngol Clin North Am 2010 ; 43 : 971–983. [CrossRef] [PubMed] [Google Scholar]
  26. Seo YJ, Brown D. Experimental Animal Models for Meniere’s Disease: A Mini-Review. J Audiol Otol 2020; 24 : 53–60. [CrossRef] [PubMed] [Google Scholar]
  27. Xu L-H, Tang G-R, Yang J-J, et al. AVP modulation of the vestibular nucleus via V1b receptors potentially contributes to the development of motion sickness in rat. Mol Brain 2015 ; 8 : 86. [CrossRef] [PubMed] [Google Scholar]
  28. Stewart CE, Holt AG, Altschuler RA, et al. Effects of Noise Exposure on the Vestibular System: A Systematic Review. Front Neurol 2020; 11. [PubMed] [Google Scholar]
  29. Kim J, Xia A, Grillet N, et al. Osmotic stabilization prevents cochlear synaptopathy after blast trauma. Proc Natl Acad Sci U S A 2018 ; 115 : E4853–E4860. [PubMed] [Google Scholar]
  30. Deveze A, Bernard-Demanze L, Xavier F, et al. Vestibular compensation and vestibular rehabilitation. Current concepts and new trends. Neurophysiol Clin 2014 ; 44 : 49–57. [CrossRef] [PubMed] [Google Scholar]
  31. Marouane E, Rastoldo G, El Mahmoudi N, et al. Identification of New Biomarkers of Posturo-Locomotor Instability in a Rodent Model of Vestibular Pathology. Front Neurol 2020; 11. [PubMed] [Google Scholar]
  32. Rastoldo G, Marouane E, El Mahmoudi N, et al. Quantitative Evaluation of a New Posturo-Locomotor Phenotype in a Rodent Model of Acute Unilateral Vestibulopathy. Front Neurol 2020; 11. [PubMed] [Google Scholar]
  33. Tighilet B, Chabbert C. Adult neurogenesis promotes balance recovery after vestibular loss. Prog Neurobiol 2019 ; 174 : 28–35. [CrossRef] [PubMed] [Google Scholar]
  34. Tighilet B, Trottier S, Lacour M. Dose- and duration-dependent effects of betahistine dihydrochloride treatment on histamine turnover in the cat. Eur J Pharmacol 2005 ; 523 : 54–63. [CrossRef] [PubMed] [Google Scholar]
  35. Tighilet B, Leonard J, Bernard-Demanze L, et al. Comparative analysis of pharmacological treatments with N-acetyl-dl-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat. Eur J Pharmacol 2015 ; 769 : 342–349. [CrossRef] [PubMed] [Google Scholar]
  36. Dutheil S, Lacour M, Tighilet B. Neurogenic Potential of the Vestibular Nuclei and Behavioural Recovery Time Course in the Adult Cat Are Governed by the Nature of the Vestibular Damage. PLoS One 2011 ; 6 : e22262. [CrossRef] [PubMed] [Google Scholar]
  37. Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear Res 2017 ; 349 : 138–147. [CrossRef] [PubMed] [Google Scholar]
  38. Viana LM, O’Malley JT, Burgess BJ, et al. Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res 2015 ; 327 : 78–88. [CrossRef] [PubMed] [Google Scholar]
  39. Niparko JK. Pathology of the ear, Second Edition. By Harold F. Schuknecht, Lea & Febiger, Malvern, Pennsylvania, 1993, 672 pp, $149.50. Head & Neck 1994 ; 16 : 298. [CrossRef] [Google Scholar]
  40. Rauch SD. Vestibular histopathology of the human temporal bone. What can we learn?. Ann N Y Acad Sci 2001 ; 942 : 25–33. [Google Scholar]
  41. Wan G, Ji L, Schrepfer T, et al. Synaptopathy as a Mechanism for Age-Related Vestibular Dysfunction in Mice. Front Aging Neurosci 2019; 11. [PubMed] [Google Scholar]
  42. Puel JL, Pujol R, Tribillac F, et al. Excitatory amino acid antagonists protect cochlear auditory neurons from excitotoxicity. J Comp Neurol 1994 ; 341 : 241–256. [CrossRef] [PubMed] [Google Scholar]
  43. Brugeaud A, Travo C, Demêmes D, et al. Control of Hair Cell Excitability by Vestibular Primary Sensory Neurons. J Neurosci 2007 ; 27 : 3503–3511. [CrossRef] [PubMed] [Google Scholar]
  44. Dyhrfjeld-Johnsen J, Gaboyard-Niay S, Broussy A, et al. Ondansetron reduces lasting vestibular deficits in a model of severe peripheral excitotoxic injury. J Vestib Res 2013 ; 23 : 177–186. [CrossRef] [PubMed] [Google Scholar]
  45. Gaboyard-Niay S, Travo C, Saleur A, et al. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms. Dis Model Mech 2016 ; 9 : 1181–1192. [PubMed] [Google Scholar]
  46. Cassel R, Wiener-Vacher S, El Ahmadi A, et al. Reduced Balance Restoration Capacities Following Unilateral Vestibular Insult in Elderly Mice. Front Neurol 2018; 9. [PubMed] [Google Scholar]
  47. Ruttin B.. Zur differentialdiagnose der labyrinth. Horenrverkrankugen Z Ohrenheilk 1909 ; 57 : 327–331. [Google Scholar]
  48. Hegemann SCA, Wenzel A. Diagnosis and Treatment of Vestibular Neuritis/Neuronitis or Peripheral Vestibulopathy (PVP)? Open Questions and Possible answers. Otol Neurotol 2017 ; 38 : 626–631. [CrossRef] [PubMed] [Google Scholar]
  49. Bradford RD, Yoo Y-G, Golemac M, et al. Murine CMV-Induced Hearing Loss Is Associated with Inner Ear Inflammation and Loss of Spiral Ganglia Neurons. PLoS Pathog 2015 ; 11 : e1004774. [CrossRef] [PubMed] [Google Scholar]
  50. Zhang J, Chen S, Hou Z, et al. Lipopolysaccharide-Induced Middle Ear Inflammation Disrupts the cochlear Intra-Strial Fluid-Blood Barrier through Down-Regulation of Tight Junction Proteins. PLoS One 2015 ; 10 : e0122572. [CrossRef] [PubMed] [Google Scholar]
  51. Dutheil S, Escoffier G, Gharbi A, et al. GABA A Receptor Agonist and Antagonist Alter Vestibular Compensation and Different Steps of Reactive Neurogenesis in Deafferented Vestibular Nuclei of Adult Cats. J Neurosc. 2013 ; 33 : 15555–15566. [CrossRef] [PubMed] [Google Scholar]
  52. El Mahmoudi N, Rastoldo G, Marouane E, et al. Breaking a dogma: acute anti-inflammatory treatment alters both post-lesional functional recovery and endogenous adaptive plasticity mechanisms in a rodent model of acute peripheral vestibulopathy. J Neuroinflammation 2021; 18 : 183. [CrossRef] [PubMed] [Google Scholar]
  53. El Mahmoudi N, Marouane E, Rastoldo G, et al. Microglial Dynamics Modulate Vestibular Compensation in a Rodent Model of Vestibulopathy and Condition the Expression of Plasticity Mechanisms in the Deafferented Vestibular Nuclei. Cells 2022; 11 : 2693. [CrossRef] [PubMed] [Google Scholar]
  54. Marouane E, El Mahmoudi N, Rastoldo G, et al. Sensorimotor Rehabilitation Promotes Vestibular Compensation in a Rodent Model of Acute Peripheral Vestibulopathy by Promoting Microgliogenesis in the Deafferented Vestibular Nuclei. Cells 2021; 10 : 3377. [CrossRef] [PubMed] [Google Scholar]
  55. Liberge M, Manrique C, Bernard-Demanze L, et al. Changes in TNFα, NFκB and MnSOD protein in the vestibular nuclei after unilateral vestibular deafferentation. J Neuroinflammation 2010 ; 7 : 91. [CrossRef] [PubMed] [Google Scholar]
  56. de Waele C, Campos Torres A, Josset P, et al. Evidence for reactive astrocytes in rat vestibular and cochlear nuclei following unilateral inner ear lesion. Eur J Neurosci 1996 ; 8 : 2006–2018. [CrossRef] [PubMed] [Google Scholar]
  57. Campos Torres A, Vidal PP, Waele C de. Evidence for a microglial reaction within the vestibular and cochlear nuclei following inner ear lesion in the rat. Neuroscience 1999; 92 : 1475–90. [CrossRef] [PubMed] [Google Scholar]
  58. Barany B.. Beeinflussing des Ohrensausen durch intravenös injizierte Lokalanästhetica. Acta Otolaryngol 1935 ; 23 : 201–207. [Google Scholar]
  59. Adunka O, Moustaklis E, Weber A, et al. Labyrinth anesthesia–a forgotten but practical treatment option in Ménière’s disease. ORL J Otorhinolaryngol Relat Spec 2003 ; 65 : 84–90. [CrossRef] [PubMed] [Google Scholar]
  60. Fradis M, Podoshin L, Ben-David J, et al. Treatment of Meniere’s disease by intratympanic injection with lidocaine. Arch Otolaryngol 1985 ; 111 : 491–493. [CrossRef] [Google Scholar]
  61. Rahm WE, Strother WF, Crump JF, et al. The effects of anesthetics upon the ear. IV. Lidocaine hydrochloride. Ann Otol Rhinol Laryngol 1962 ; 71 : 116–123. [CrossRef] [PubMed] [Google Scholar]
  62. Jacob P-Y, Poucet B, Liberge M, et al. Vestibular control of entorhinal cortex activity in spatial navigation. Front Integr Neurosci 2014 ; 8 : 38. [PubMed] [Google Scholar]
  63. Lopez C, Blanke O. Nobel Prize centenary: Robert Bárány and the vestibular system. Curr Biol 2014 ; 24 : R1026–R1028. [CrossRef] [PubMed] [Google Scholar]
  64. Ma F, Liu J, Li X, et al. Effects of caloric vestibular stimulation on serotoninergic system in the media vestibular nuclei of guinea pigs. Chin Med J 2007 ; 120 : 120–124. [CrossRef] [PubMed] [Google Scholar]
  65. Venail F, Attali P, Wersinger E, et al. Safety, tolerability, pharmacokinetics and pharmacokinetic-pharmacodynamic modelling of the novel H4 receptor inhibitor SENS-111 using a modified caloric test in healthy subjects. Br J Clin Pharmacol 2018 ; 84 : 2836–2848. [CrossRef] [PubMed] [Google Scholar]
  66. Tighilet B, Péricat D, Frelat A, et al. Adjustment of the dynamic weight distribution as a sensitive parameter for diagnosis of postural alteration in a rodent model of vestibular deficit. PLoS One 2017 ; 12 : e0187472. [CrossRef] [PubMed] [Google Scholar]
  67. Smith PF. Hearing loss versus vestibular loss as contributors to cognitive dysfunction. J Neurol 2022; 269 : 87–99. [CrossRef] [PubMed] [Google Scholar]
  68. Bigelow RT, Agrawal Y. Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory. J Vestib Res 2015 ; 25 : 73–89. [CrossRef] [PubMed] [Google Scholar]
  69. Baek JH, Zheng Y, Darlington CL, et al. Evidence that spatial memory deficits following bilateral vestibular deafferentation in rats are probably permanent. Neurobiol Learn Mem 2010 ; 94 : 402–413. [CrossRef] [PubMed] [Google Scholar]
  70. Zheng Y, Darlington CL, Smith PF. Impairment and recovery on a food foraging task following unilateral vestibular deafferentation in rats. Hippocampus 2006 ; 16 : 368–378. [CrossRef] [PubMed] [Google Scholar]
  71. Staab JP, Eckhardt-Henn A, Horii A, et al. Diagnostic criteria for persistent postural-perceptual dizziness (PPPD): Consensus document of the committee for the Classification of Vestibular Disorders of the Bárány Society. J Vestib Res 2017 ; 27 : 191–208. [CrossRef] [PubMed] [Google Scholar]
  72. El Khiati R, Tighilet B, Besnard S, et al. Hormones and Vestibular Disorders: The Quest for Biomarkers. Brain Sciences 2022; 12 : 592. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.