Free Access
Issue
Med Sci (Paris)
Volume 39, Number 8-9, Août–Septembre 2023
Page(s) 643 - 649
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023094
Published online 11 September 2023
  1. Haute Autorité de Santé (HAS). Maladie d’Alzheimer et maladies apparentées : diagnostic et prise en charge de l’apathie. Recommandations (juillet 2014), disponible sur has-sante.fr. [Google Scholar]
  2. Haute Autorité de Santé (HAS). Avis de la commission de la transparence du 19 octobre 2016 (CT-15053, CT-15067, CT-15049 et CT-12743/15059), disponible sur has-sante.fr. [Google Scholar]
  3. Cummings J, Feldman HH, Scheltens P. The, “rights” of precision drug development for Alzheimer’s disease. Alzheimers Res Ther 2019 ; 11 : 76. [CrossRef] [PubMed] [Google Scholar]
  4. Audrain M, Souchet B, Alves S, et al. βAPP Processing drives gradual tau pathology in an age-dependent amyloid rat model of Alzheimer’s disease. Cereb Cortex 2018 ; 28 : 3976–3993. [CrossRef] [PubMed] [Google Scholar]
  5. Renner M, Lacor PN, Velasco PT, et al. Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 2010 ; 66 : 739–754. [CrossRef] [PubMed] [Google Scholar]
  6. Sasaguri H, Nilsson P, Hashimoto S, et al. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J 2017 ; 36 : 2473–2487. [CrossRef] [PubMed] [Google Scholar]
  7. Saido TC, Iwata N. Metabolism of amyloid β peptide and pathogenesis of Alzheimer’s disease: towards presymptomatic diagnosis, prevention and therapy. Neurosci Res 2006 ; 54 : 235–253. [CrossRef] [PubMed] [Google Scholar]
  8. Haas LT, Salazar SV, Kostylev MA, et al. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease. Brain 2016 ; 139 : 526–546. [CrossRef] [PubMed] [Google Scholar]
  9. Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 2010 ; 142 : 387–397. [CrossRef] [PubMed] [Google Scholar]
  10. Snyder EM, Nong Y, Almeida CG, et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 2005 ; 8 : 1051–1058. [CrossRef] [PubMed] [Google Scholar]
  11. Um JW, Nygaard HB, Heiss JK, et al. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 2012 ; 15 : 1227–1235. [CrossRef] [PubMed] [Google Scholar]
  12. Um JW, Kaufman AC, Kostylev M, et al. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron 2013 ; 79 : 887–902. [CrossRef] [PubMed] [Google Scholar]
  13. Um JW, Strittmatter SM. Amyloid-β induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion 2013 ; 7 : 37–41. [CrossRef] [PubMed] [Google Scholar]
  14. Larson M, Sherman MA, Amar F, et al. The complex PrP(c)-Fyn couples human oligomeric Aβ with pathological tau changes in Alzheimer’s disease. J Neurosci 2012 ; 32 : 16857–16871. [CrossRef] [PubMed] [Google Scholar]
  15. Ittner LM, Götz J. Amyloid-β and tau – a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 2011 ; 12 : 65–72. [Google Scholar]
  16. Mondragón-Rodríguez S, Trillaud-Doppia E, Dudilot A, et al. Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-D-aspartate receptor-dependent tau phosphorylation. J Biol Chem 2012 ; 287 : 32040–32053. [CrossRef] [PubMed] [Google Scholar]
  17. Hippolyte A, Vernis L. Les peptides D-énantiomériques pourraient représenter une nouvelle piste thérapeutique dans la maladie d’Alzheimer. Med Sci (Paris) 2019 ; 35 : 897–900. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Hamilton A, Vasefi M, Vander Tuin C, et al. Chronic pharmacological mGluR5 inhibition prevents cognitive impairment and reduces pathogenesis in an Alzheimer disease mouse model. Cell Rep 2016 ; 15 : 1859–1865. [CrossRef] [PubMed] [Google Scholar]
  19. Bi X, Gall CM, Zhou J, et al. Uptake and pathogenic effects of amyloid beta peptide 1–42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists. Neuroscience 2002 ; 112 : 827–840. [CrossRef] [PubMed] [Google Scholar]
  20. LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci 2007 ; 8 : 499–509. [CrossRef] [PubMed] [Google Scholar]
  21. Suire CN, Abdul-Hay SO, Sahara T, et al. Cathepsin D regulates cerebral Aβ42/40 ratios via differential degradation of Aβ42 and Aβ40. Alzheimers Res Ther 2020; 12 : 80. [CrossRef] [PubMed] [Google Scholar]
  22. Kurup P, Zhang Y, Venkitaramani DV, et al. The role of STEP in Alzheimer’s disease. Channels (Austin). 2010 ; 4 : 347–350. [CrossRef] [PubMed] [Google Scholar]
  23. Kurup P, Zhang Y, Xu J, et al. Aβ-mediated NMDA receptor endocytosis in Alzheimer’s disease involves ubiquitination of the tyrosine phosphatase STEP61. J Neurosci 2010 ; 30 : 5948–5957. [CrossRef] [PubMed] [Google Scholar]
  24. Zhang Y, Kurup P, Xu J, et al. Genetic reduction of striatal-enriched tyrosine phosphatase (STEP) reverses cognitive and cellular deficits in an Alzheimer’s disease mouse model. Proc Natl Acad Sci USA 2010 ; 107 : 19014–19019. [CrossRef] [PubMed] [Google Scholar]
  25. Zhang Y, Venkitaramani DV, Gladding CM, et al. The tyrosine phosphatase STEP mediates AMPA receptor endocytosis after metabotropic glutamate receptor stimulation. J Neurosci 2008 ; 28 : 10561–10566. [CrossRef] [PubMed] [Google Scholar]
  26. Zhang Y, Kurup P, Xu J, et al. Reduced levels of the tyrosine phosphatase STEP block β amyloid-mediated GluA1/GluA2 receptor internalization. J Neurochem 2011 ; 119 : 664–672. [CrossRef] [PubMed] [Google Scholar]
  27. Haass C, Lemere CA, Capell A, et al. The Swedish mutation causes early-onset Alzheimer’s disease by beta-secretase cleavage within the secretory pathway. Nat Med 1995 ; 1 : 1291–1296. [CrossRef] [PubMed] [Google Scholar]
  28. Mullan M, Crawford F, Axelman K, et al. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1992 ; 1 : 345–347. [CrossRef] [PubMed] [Google Scholar]
  29. Cecarini V, Bonfili L, Amici M, et al. Amyloid peptides in different assembly states and related effects on isolated and cellular proteasomes. Brain Res 2008 ; 1209 : 8–18. [CrossRef] [PubMed] [Google Scholar]
  30. Dahlmann B.. Role of proteasomes in disease. BMC Biochem 2007 ; 8 : S3. [CrossRef] [PubMed] [Google Scholar]
  31. Lopez Salon M, Pasquini L, Besio Moreno M, et al. Relationship between beta-amyloid degradation and the 26S proteasome in neural cells. Exp Neurol 2003; 180 : 131–143. [CrossRef] [PubMed] [Google Scholar]
  32. Oh S, Hong HS, Hwang E, et al. Amyloid peptide attenuates the proteasome activity in neuronal cells. Mech Ageing Dev 2005 ; 126 : 1292–1299. [CrossRef] [PubMed] [Google Scholar]
  33. Tseng BP, Green KN, Chan JL, et al. Aβ inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging 2008 ; 29 : 111607–1618. [CrossRef] [PubMed] [Google Scholar]
  34. Oddo, 2008. The ubiquitin-proteasome system in Alzheimer’s disease. J Cell Mol Med 2008 ; 12: 363–373. [CrossRef] [PubMed] [Google Scholar]
  35. Zhao X, Yang J. Amyloid-β peptide is a substrate of the human 20S proteasome. ACS Chem Neurosci 2010 ; 1 : 655–660. [CrossRef] [PubMed] [Google Scholar]
  36. Orre M, Kamphuis W, Dooves S, et al. Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain 2013 ; 136 : 1415–1431. [CrossRef] [PubMed] [Google Scholar]
  37. Piccinini M, Mostert M, Croce S, et al. Interferon-gamma-inducible subunits are incorporated in human brain 20S proteasome. J Neuroimmunol 2003 ; 135 : 135–140. [CrossRef] [PubMed] [Google Scholar]
  38. Wagner LK, Gilling KE, Schormann E, et al. Immunoproteasome deficiency alters microglial cytokine response and improves cognitive deficits in Alzheimer’s disease-like APPPS1 mice. Acta Neuropathol Commun 2017 ; 5 : 52. [CrossRef] [PubMed] [Google Scholar]
  39. Mishto M, Bellavista E, Santoro A, et al. Immunoproteasome and LMP2 polymorphism in aged and Alzheimer’s disease brains. Neurobiol Aging 2006 ; 27 : 54–66. [CrossRef] [PubMed] [Google Scholar]
  40. Yeo IJ, Lee MJ, Baek A, et al. A dual inhibitor of the proteasome catalytic subunits LMP2 and Y attenuates disease progression in mouse models of Alzheimer’s disease. Sci Rep 2019 ; 9 : 18393. [CrossRef] [PubMed] [Google Scholar]
  41. Bhattarai D, Lee MJ, Baek A, et al. LMP2 inhibitors as a potential treatment for Alzheimer’s disease. J Med Chem 2020; 63 : 3763–3783. [CrossRef] [PubMed] [Google Scholar]
  42. Simon PYR, Oreal H, Audran G, et al. Proteasome inhibiting β-lactam prodrugs useful for the treatment of cancer and neurodegenerative disorders. Brevet US 11 053 249 B2. [Google Scholar]
  43. Katsiki M, Chondrogianni N, Chinou I, et al. The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res 2007 ; 10 : 157–172. [CrossRef] [PubMed] [Google Scholar]
  44. Chondrogianni N, Gonos ES. Proteasome activation as a novel antiaging strategy. IUBMB Life 2008 ; 60 : 651–655. [CrossRef] [PubMed] [Google Scholar]
  45. Huang L, Chen CH. Proteasome regulators: activators and inhibitors. Curr Med Chem 2009 ; 16 : 931–939. [CrossRef] [PubMed] [Google Scholar]
  46. Navabi SP, Sarkaki A, Mansouri E, et al. The effects of betulinic acid on neurobehavioral activity, electrophysiology and histological changes in an animal model of the Alzheimer’s disease. Behav Brain Res 2018 ; 337 : 99–106. [CrossRef] [PubMed] [Google Scholar]
  47. Rigacci S, Guidotti V, Bucciantini M, et al. Aβ(1–42) aggregates into non-toxic amyloid assemblies in the presence of the natural polyphenol oleuropein aglycon. Curr Alzheimer Res 2011 ; 8 : 841–852. [CrossRef] [PubMed] [Google Scholar]
  48. Leri M, Natalello A, Bruzzone E, et al. Oleuropein aglycone and hydroxytyrosol interfere differently with toxic Aβ1-42 aggregation. Food Chem Toxicol 2019 ; 129 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  49. Nam S, Smith DM, Dou QP. Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 2001 ; 276 : 13322–13330. [CrossRef] [PubMed] [Google Scholar]
  50. Pettinari A, Amici M, Cuccioloni M, et al. Effect of polyphenolic compounds on the proteolytic activities of constitutive and immuno-proteasomes. Antioxid Redox Signal 2006 ; 8 : 121–129. [CrossRef] [PubMed] [Google Scholar]
  51. Cui L, Zhang Y, Cao H, et al. Ferulic acid inhibits the transition of amyloid-β42 monomers to oligomers but accelerates the transition from oligomers to fibrils. J Alzheimers Dis 2013 ; 37 : 19–28. [CrossRef] [PubMed] [Google Scholar]
  52. Sgarbossa A, Giacomazza D, di Carlo M. Ferulic acid: a hope for Alzheimer’s disease therapy from plants. Nutrients 2015 ; 7 : 5764–5782. [CrossRef] [PubMed] [Google Scholar]
  53. Mori T, Koyama N, Tan J, et al. Combined treatment with the phenolics (-)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer-like pathology in mice. J Biol Chem 2019 ; 294 : 2714–2731. [CrossRef] [PubMed] [Google Scholar]
  54. Mahaman YAR, Huang F, Salissou MTM, et al. Ferulic acid improves synaptic plasticity and cognitive impairments by alleviating the PP2B/DARPP-32/PP1 axis-mediated STEP increase and Aβ burden in Alzheimer’s disease. Neurotherapeutics. 2023. doi: 10.1007/s13311-023-01356-6. [PubMed] [Google Scholar]
  55. Cho JY, Kim HS, Kim DH, et al. Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of beta-amyloid peptide (1–42) in mice. Prog Neuropsychopharmacol Biol Psychiatry 2005 ; 29 : 901–907. [CrossRef] [PubMed] [Google Scholar]
  56. Yan JJ, Jung JS, Kim TK, et al. Protective effects of ferulic acid in amyloid precursor protein plus presenilin-1 transgenic mouse model of Alzheimer disease. Biol Pharm Bull 2013 ; 36 : 140–143. [CrossRef] [PubMed] [Google Scholar]
  57. De Felice FG, Vieira MN, Bomfim TR, et al. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci USA 2009 ; 106 : 1971–1976. [CrossRef] [PubMed] [Google Scholar]
  58. Rani V, Deshmukh R, Jaswal P, et al. Alzheimer’s disease: Is this a brain specific diabetic condition?. Physiol Behav 2016 ; 164 : 259–267. [CrossRef] [PubMed] [Google Scholar]
  59. Gomes BAQ, Silva JPB, Romeiro CFR, et al. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid Med Cell Longev 2018 ; 2018 : 8152373. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.