Open Access
Issue
Med Sci (Paris)
Volume 39, Number 8-9, Août–Septembre 2023
Page(s) 619 - 624
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023095
Published online 11 September 2023
  1. Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009 ; 10 : 445–457. [CrossRef] [PubMed] [Google Scholar]
  2. Mayor R, Etienne-Manneville S. The front and rear of collective cell migration. Nat Rev Mol Cell Biol 2016 ; 17 : 97–109. [CrossRef] [PubMed] [Google Scholar]
  3. Aman A, Piotrowski T. Cell migration during morphogenesis. Dev Biol 2010 ; 341 : 20–33. [CrossRef] [PubMed] [Google Scholar]
  4. Rothenberg KE, Fernandez-Gonzalez R. Forceful closure: cytoskeletal networks in embryonic wound repair. Mol Biol Cell 2019 ; 30 : 1353–1358. [CrossRef] [PubMed] [Google Scholar]
  5. Thiery JP. Metastasis: alone or together?. Curr Biol 2009 ; 19 : R1121–R1123. [CrossRef] [PubMed] [Google Scholar]
  6. Khalil AA, Friedl P. Determinants of leader cells in collective cell migration. Integr Biol (Camb) 2010 ; 2 : 568–574. [CrossRef] [PubMed] [Google Scholar]
  7. Yamamoto A, Doak AE, Cheung KJ. Orchestration of Collective Migration and Metastasis by Tumor Cell Clusters. Annu Rev Pathol 2023; 18 : 231–56. [CrossRef] [PubMed] [Google Scholar]
  8. Aramini B, Masciale V, Arienti C, et al. Cancer Stem Cells (CSCs), Circulating Tumor Cells (CTCs) and Their Interplay with Cancer Associated Fibroblasts (CAFs): A New World of Targets and Treatments. Cancers (Basel) 2022; 14. [PubMed] [Google Scholar]
  9. Stuelten CH, Parent CA, Montell DJ. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 2018 ; 18 : 296–312. [CrossRef] [PubMed] [Google Scholar]
  10. Peercy BE, Starz-Gaiano M. Clustered cell migration: Modeling the model system of Drosophila border cells. Semin Cell Dev Biol 2020; 100 : 167–76. [CrossRef] [PubMed] [Google Scholar]
  11. Montell DJ, Yoon WH, Starz-Gaiano M. Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 2012 ; 13 : 631–645. [CrossRef] [PubMed] [Google Scholar]
  12. Roberto GM, Emery G. Directing with restraint: Mechanisms of protrusion restriction in collective cell migrations. Semin Cell Dev Biol 2022; 129 : 75–81. [CrossRef] [PubMed] [Google Scholar]
  13. Spradling A. Developmental genetics of oogenesis. In: The development of Drosophila melanogaster. Bate M, Martinez Arias A (Eds). NewYork : Cold Spring Harbor, 1993. [Google Scholar]
  14. Silver DL, Montell DJ. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 2001 ; 107 : 831–841. [CrossRef] [PubMed] [Google Scholar]
  15. Cai D, Chen SC, Prasad M, et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 2014 ; 157 : 1146–1159. [CrossRef] [PubMed] [Google Scholar]
  16. Niewiadomska P, Godt D, Tepass U. DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol 1999 ; 144 : 533–547. [CrossRef] [PubMed] [Google Scholar]
  17. Wang H, Guo X, Wang X, et al. Supracellular Actomyosin Mediates Cell-Cell Communication and Shapes Collective Migratory Morphology. iScience 2020; 23 : 101204. [CrossRef] [PubMed] [Google Scholar]
  18. McDonald JA, Pinheiro EM, Montell DJ. PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 2003 ; 130 : 3469–3478. [CrossRef] [PubMed] [Google Scholar]
  19. McDonald JA, Pinheiro EM, Kadlec L, et al. Multiple EGFR ligands participate in guiding migrating border cells. Dev Biol 2006 ; 296 : 94–103. [CrossRef] [PubMed] [Google Scholar]
  20. Dai W, Guo X, Cao Y, et al. Tissue topography steers migrating Drosophila border cells. Science 2020; 370 : 987–90. [CrossRef] [PubMed] [Google Scholar]
  21. Duchek P, Rørth P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 2001 ; 291 : 131–133. [CrossRef] [PubMed] [Google Scholar]
  22. Duchek P, Somogyi K, Jékely G, et al. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 2001 ; 107 : 17–26. [CrossRef] [PubMed] [Google Scholar]
  23. Fernandez-Espartero CH, Ramel D, Farago M, et al. GTP exchange factor Vav regulates guided cell migration by coupling guidance receptor signalling to local Rac activation. J Cell Sci 2013 ; 126 : 2285–2293. [PubMed] [Google Scholar]
  24. Bianco A, Poukkula M, Cliffe A, et al. Two distinct modes of guidance signalling during collective migration of border cells. Nature 2007 ; 448 : 362–365. [CrossRef] [PubMed] [Google Scholar]
  25. Campanale JP, Mondo JA, Montell DJ. A Scribble/Cdep/Rac pathway controls follower-cell crawling and cluster cohesion during collective border-cell migration. Dev Cell 2022; 57 : 2483–96.e4. [CrossRef] [PubMed] [Google Scholar]
  26. Mishra AK, Mondo JA, Campanale JP, Montell DJ. Coordination of protrusion dynamics within and between collectively migrating border cells by myosin II. Mol Biol Cell 2019 ; 30 : 2490–2502. [CrossRef] [PubMed] [Google Scholar]
  27. Aranjuez G, Burtscher A, Sawant K, et al. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue. Mol Biol Cell 2016 ; 27 : 1898–1910. [CrossRef] [PubMed] [Google Scholar]
  28. Chen Y, Kotian N, Aranjuez G, et al. Protein phosphatase 1 activity controls a balance between collective and single cell modes of migration. Elife 2020; 9. [Google Scholar]
  29. Plutoni C, Keil S, Zeledon C, et al. Misshapen coordinates protrusion restriction and actomyosin contractility during collective cell migration. Nat Commun 2019 ; 10 : 3940. [CrossRef] [PubMed] [Google Scholar]
  30. Wang X, He L, Wu YI, et al. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat Cell Biol 2010 ; 12 : 591–597. [CrossRef] [PubMed] [Google Scholar]
  31. Assaker G, Ramel D, Wculek SK, et al. Spatial restriction of receptor tyrosine kinase activity through a polarized endocytic cycle controls border cell migration. Proc Natl Acad Sci U S A 2010 ; 107 : 22558–22563. [CrossRef] [PubMed] [Google Scholar]
  32. Ramel D, Wang X, Laflamme C, et al. Rab11 regulates cell-cell communication during collective cell movements. Nat Cell Biol 2013 ; 15 : 317–324. [CrossRef] [PubMed] [Google Scholar]
  33. Jékely G, Sung HH, Luque CM, Rørth P. Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev Cell 2005 ; 9 : 197–207. [CrossRef] [PubMed] [Google Scholar]
  34. Janssens K, Sung HH, Rørth P. Direct detection of guidance receptor activity during border cell migration. Proc Natl Acad Sci U S A 2010 ; 107 : 7323–7328. [CrossRef] [PubMed] [Google Scholar]
  35. Laflamme C, Assaker G, Ramel D, et al. Evi5 promotes collective cell migration through its Rab-GAP activity. J Cell Biol 2012 ; 198 : 57–67. [CrossRef] [PubMed] [Google Scholar]
  36. Wan P, Wang D, Luo J, et al. Guidance receptor promotes the asymmetric distribution of exocyst and recycling endosome during collective cell migration. Development 2013 ; 140 : 4797–4806. [CrossRef] [PubMed] [Google Scholar]
  37. Colombie N, Choesmel-Cadamuro V, Series J, et al. Non-autonomous role of Cdc42 in cell-cell communication during collective migration. Dev Biol 2017 ; 423 : 12–18. [CrossRef] [PubMed] [Google Scholar]
  38. Zeledon C, Sun X, Plutoni C, Emery G. The ArfGAP Drongo Promotes Actomyosin Contractility during Collective Cell Migration by Releasing Myosin Phosphatase from the Trailing Edge. Cell Rep 2019 ; 28 : 3238–48.e3. [CrossRef] [PubMed] [Google Scholar]
  39. Cobreros-Reguera L, Fernández-Miñán A, Fernández-Espartero CH, et al. The Ste20 kinase misshapen is essential for the invasive behaviour of ovarian epithelial cells in Drosophila. EMBO Rep 2010 ; 11 : 943–949. [CrossRef] [PubMed] [Google Scholar]
  40. Hipfner DR, Keller N, Cohen SM. Slik Sterile-20 kinase regulates Moesin activity to promote epithelial integrity during tissue growth. Genes Dev 2004 ; 18 : 2243–2248. [CrossRef] [PubMed] [Google Scholar]
  41. Carreno S, Kouranti I, Glusman ES, et al. Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. J Cell Biol 2008 ; 180 : 739–746. [CrossRef] [PubMed] [Google Scholar]
  42. Chauhan BK, Lou M, Zheng Y, Lang RA. Balanced Rac1 and RhoA activities regulate cell shape and drive invagination morphogenesis in epithelia. Proc Natl Acad Sci U S A 2011 ; 108 : 18289–18294. [CrossRef] [PubMed] [Google Scholar]
  43. Martin E, Ouellette MH, Jenna S. Rac1/RhoA antagonism defines cell-to-cell heterogeneity during epidermal morphogenesis in nematodes. J Cell Biol 2016 ; 215 : 483–498. [CrossRef] [PubMed] [Google Scholar]
  44. Comunale F, Causeret M, Favard C, et al. Rac1 and RhoA GTPases have antagonistic functions during N-cadherin-dependent cell-cell contact formation in C2C12 myoblasts. Biol Cell 2007 ; 99 : 503–517. [CrossRef] [PubMed] [Google Scholar]
  45. Shoval I, Kalcheim C. Antagonistic activities of Rho and Rac GTPases underlie the transition from neural crest delamination to migration. Dev Dyn 2012 ; 241 : 1155–1168. [CrossRef] [PubMed] [Google Scholar]
  46. Zegers MM, Friedl P. Rho GTPases in collective cell migration. Small GTPases 2014 ; 5 : e28997. [Google Scholar]
  47. Majumder P, Aranjuez G, Amick J, McDonald JA. Par-1 controls myosin-II activity through myosin phosphatase to regulate border cell migration. Curr Biol 2012 ; 22 : 363–372. [CrossRef] [PubMed] [Google Scholar]
  48. Zhou S, Li P, Liu J, et al. Two Rac1 pools integrate the direction and coordination of collective cell migration. Nat Commun 2022; 13 : 6014. [CrossRef] [PubMed] [Google Scholar]
  49. Wang X, Wang H, Liu L, et al. Temporal Coordination of Collective Migration and Lumen Formation by Antagonism between Two Nuclear Receptors. iScience 2020; 23 : 101335. [CrossRef] [PubMed] [Google Scholar]
  50. Manning L, Sheth J, Bridges S, et al. A hormonal cue promotes timely follicle cell migration by modulating transcription profiles. Mech Dev 2017 ; 148 : 56–68. [CrossRef] [PubMed] [Google Scholar]
  51. Miao G, Godt D, Montell DJ. Integration of Migratory Cells into a New Site In Vivo Requires Channel-Independent Functions of Innexins on Microtubules. Dev Cell 2020; 54 : 501–15.e9. [CrossRef] [PubMed] [Google Scholar]
  52. Friedl P, Sahai E, Weiss S, Yamada KM. New dimensions in cell migration. Nat Rev Mol Cell Biol 2012 ; 13 : 743–747. [CrossRef] [PubMed] [Google Scholar]
  53. Haeger A, Wolf K, Zegers MM, Friedl P. Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 2015 ; 25 : 556–566. [CrossRef] [PubMed] [Google Scholar]
  54. Bai Z, Yao Q, Sun Z, et al. Prognostic Value of mRNA Expression of MAP4K Family in Acute Myeloid Leukemia. Technol Cancer Res Treat 2019 ; 18 : 1533033819873927. [PubMed] [Google Scholar]
  55. Gao X, Chen G, Gao C, et al. MAP4K4 is a novel MAPK/ERK pathway regulator required for lung adenocarcinoma maintenance. Mol Oncol 2017 ; 11 : 628–639. [CrossRef] [PubMed] [Google Scholar]
  56. Gao X, Gao C, Liu G, Hu J. MAP4K4: an emerging therapeutic target in cancer. Cell Biosci 2016 ; 6 : 56. [CrossRef] [PubMed] [Google Scholar]
  57. Kim JW, Berrios C, Kim M, et al. STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells. Elife 2020; 9. [Google Scholar]
  58. Hirozane T, Masuda M, Sugano T, et al. Direct conversion of osteosarcoma to adipocytes by targeting TNIK. JCI Insight 2021; 6. [Google Scholar]
  59. Torres-Ayuso P, An E, Nyswaner KM, et al. TNIK is a therapeutic target in Lung Squamous Cell Carcinoma and regulates FAK activation through Merlin. Cancer Discov 2021; 11 : 1411–23. [CrossRef] [PubMed] [Google Scholar]
  60. Tripolitsioti D, Kumar KS, Neve A, et al. MAP4K4 controlled integrin beta1 activation and c-Met endocytosis are associated with invasive behavior of medulloblastoma cells. Oncotarget 2018 ; 9 : 23220–23236. [CrossRef] [PubMed] [Google Scholar]
  61. Vitorino P, Yeung S, Crow A, et al. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature 2015 ; 519 : 425–430. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.