Open Access
Med Sci (Paris)
Volume 39, Number 3, Mars 2023
Néphrologie pédiatrique : de grandes avancées et un futur rempli d’espoir
Page(s) 265 - 270
Section M/S Revues
Published online 21 March 2023
  1. Hill NR, Fatoba ST, Oke JL, et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One 2016 ; 11 : e0158765. [CrossRef] [PubMed] [Google Scholar]
  2. Harambat J, Madden I, Hogan J. Epidemiology of pediatric chronic kidney disease. Nephrol Ther 2021; 17 : 476–84. [CrossRef] [PubMed] [Google Scholar]
  3. Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004 ; 351 : 1296–1305. [CrossRef] [PubMed] [Google Scholar]
  4. Go AS, Yang J, Tan TC, et al. Contemporary rates and predictors of fast progression of chronic kidney disease in adults with and without diabetes mellitus. BMC Nephrol 2018 ; 19 : 146. [CrossRef] [PubMed] [Google Scholar]
  5. Hostetter TH. Progression of renal disease and renal hypertrophy. Annu Rev Physiol 1995 ; 57 : 263–278. [CrossRef] [PubMed] [Google Scholar]
  6. Huang Z, Zhang L, Chen Y, et al. Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway. Cell Death Dis 2016 ; 7 : e2142. [CrossRef] [PubMed] [Google Scholar]
  7. Fries JW, Sandstrom DJ, Meyer TW, et al. Glomerular hypertrophy and epithelial cell injury modulate progressive glomerulosclerosis in the rat. Lab Invest 1989 ; 60 : 205–218. [PubMed] [Google Scholar]
  8. Pagtalunan ME, Miller PL, Jumping-Eagle S, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 1997 ; 99 : 342–348. [CrossRef] [PubMed] [Google Scholar]
  9. Machuca E, Benoit G, Antignac C. Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum Mol Genet 2009 ; 18 : R185–R194. [CrossRef] [PubMed] [Google Scholar]
  10. Smeets B, Kuppe C, Sicking EM, et al. Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J Am Soc Nephrol 2011 ; 22 : 1262–1274. [Google Scholar]
  11. Hewitson TD. Renal tubulointerstitial fibrosis: common but never simple. Am J Physiol Renal Physiol 2009 ; 296 : F1239–F1244. [CrossRef] [PubMed] [Google Scholar]
  12. Pillebout E, Weitzman JB, Burtin M, et al. JunD protects against chronic kidney disease by regulating paracrine mitogens. J Clin Invest 2003 ; 112 : 843–852. [CrossRef] [PubMed] [Google Scholar]
  13. Sanz AB, Santamaría B, Ruiz-Ortega M, et al. Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol 2008 ; 19 : 1634–1642. [CrossRef] [PubMed] [Google Scholar]
  14. Humphreys BD, Lin S-L, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010 ; 176 : 85–97. [CrossRef] [PubMed] [Google Scholar]
  15. Kang HM, Ahn SH, Choi P, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 2015 ; 21 : 37–46. [CrossRef] [PubMed] [Google Scholar]
  16. Chung KW, Dhillon P, Huang S, et al. Mitochondrial Damage and Activation of the STING Pathway Lead to Renal Inflammation and Fibrosis. Cell Metab 2019 ; 30 : 784–99.e5. [CrossRef] [PubMed] [Google Scholar]
  17. Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002 ; 3 : 349–363. [CrossRef] [PubMed] [Google Scholar]
  18. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003 ; 112 : 1776–1784. [CrossRef] [PubMed] [Google Scholar]
  19. Zeisberg EM, Potenta SE, Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 2008 ; 19 : 2282–2287. [CrossRef] [PubMed] [Google Scholar]
  20. Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy?. J Clin Invest 2011 ; 121 : 468–474. [CrossRef] [PubMed] [Google Scholar]
  21. Grande MT, Sánchez-Laorden B, López-Blau C, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 2015 ; 21 : 989–997. [CrossRef] [PubMed] [Google Scholar]
  22. Lovisa S, LeBleu VS, Tampe B, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 2015 ; 21 : 998–1009. [CrossRef] [PubMed] [Google Scholar]
  23. Fine LG, Orphanides C, Norman JT. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int Suppl 1998 ; 65 : S74–S78. [PubMed] [Google Scholar]
  24. Higgins DF, Kimura K, Bernhardt WM, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 2007 ; 117 : 3810–3820. [PubMed] [Google Scholar]
  25. Mitch WE, Walser M, Buffington GA, et al. A simple method of estimating progression of chronic renal failure. Lancet 1976 ; 2 : 1326–1328. [CrossRef] [Google Scholar]
  26. Brenner BM. Remission of renal disease: recounting the challenge, acquiring the goal. J Clin Invest 2002 ; 110 : 1753–1758. [CrossRef] [PubMed] [Google Scholar]
  27. Wolf G, Neilson EG. Molecular mechanisms of tubulointerstitial hypertrophy and hyperplasia. Kidney Int 1991 ; 39 : 401–420. [CrossRef] [PubMed] [Google Scholar]
  28. Denic A, Mathew J, Lerman LO, et al. Single-Nephron Glomerular Filtration Rate in Healthy Adults. N Engl J Med 2017 ; 376 : 2349–2357. [CrossRef] [PubMed] [Google Scholar]
  29. Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 2015 ; 26 : 258–269. [CrossRef] [PubMed] [Google Scholar]
  30. Franke TF. Intracellular signaling by Akt: bound to be specific. Sci Signal 2008; 1 : pe29. [CrossRef] [PubMed] [Google Scholar]
  31. Canaud G, Bienaimé F, Viau A, et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nat Med 2013 ; 19 : 1288–1296. [CrossRef] [PubMed] [Google Scholar]
  32. Cravedi P, Ruggenenti P, Remuzzi G. Proteinuria should be used as a surrogate in CKD. Nat Rev Nephrol 2012 ; 8 : 301–306. [CrossRef] [PubMed] [Google Scholar]
  33. Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. J Am Soc Nephrol 2012 ; 23 : 1917–1928. [CrossRef] [PubMed] [Google Scholar]
  34. El Karoui K, Viau A, Dellis O, et al. Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2. Nat Commun 2016 ; 7 : 10330. [CrossRef] [PubMed] [Google Scholar]
  35. Bolignano D, Lacquaniti A, Coppolino G, et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol 2009 ; 4 : 337–344. [CrossRef] [PubMed] [Google Scholar]
  36. Anagnostou A, Vercellotti G, Barone J, et al. Factors which affect erythropoiesis in partially nephrectomized and sham-operated rats. Blood 1976 ; 48 : 425–433. [CrossRef] [PubMed] [Google Scholar]
  37. Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 2006 ; 116 : 288–296. [CrossRef] [PubMed] [Google Scholar]
  38. Kok HM, Falke LL, Goldschmeding R, et al. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 2014 ; 10 : 700–711. [CrossRef] [PubMed] [Google Scholar]
  39. Wilson KJ, Gilmore JL, Foley J, et al. Functional selectivity of EGF family peptide growth factors: implications for cancer. Pharmacol Ther 2009 ; 122 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  40. Lautrette A, Li S, Alili R, et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 2005 ; 11 : 867–874. [CrossRef] [PubMed] [Google Scholar]
  41. Terzi F, Burtin M, Hekmati M, et al. Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury. J Clin Invest 2000 ; 106 : 225–234. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.