Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 3, Mars 2023
Néphrologie pédiatrique : de grandes avancées et un futur rempli d’espoir
Page(s) 265 - 270
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023033
Publié en ligne 21 mars 2023
  1. Hill NR, Fatoba ST, Oke JL, et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One 2016 ; 11 : e0158765. [CrossRef] [PubMed] [Google Scholar]
  2. Harambat J, Madden I, Hogan J. Epidemiology of pediatric chronic kidney disease. Nephrol Ther 2021; 17 : 476–84. [CrossRef] [PubMed] [Google Scholar]
  3. Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004 ; 351 : 1296–1305. [CrossRef] [PubMed] [Google Scholar]
  4. Go AS, Yang J, Tan TC, et al. Contemporary rates and predictors of fast progression of chronic kidney disease in adults with and without diabetes mellitus. BMC Nephrol 2018 ; 19 : 146. [CrossRef] [PubMed] [Google Scholar]
  5. Hostetter TH. Progression of renal disease and renal hypertrophy. Annu Rev Physiol 1995 ; 57 : 263–278. [CrossRef] [PubMed] [Google Scholar]
  6. Huang Z, Zhang L, Chen Y, et al. Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway. Cell Death Dis 2016 ; 7 : e2142. [CrossRef] [PubMed] [Google Scholar]
  7. Fries JW, Sandstrom DJ, Meyer TW, et al. Glomerular hypertrophy and epithelial cell injury modulate progressive glomerulosclerosis in the rat. Lab Invest 1989 ; 60 : 205–218. [PubMed] [Google Scholar]
  8. Pagtalunan ME, Miller PL, Jumping-Eagle S, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 1997 ; 99 : 342–348. [CrossRef] [PubMed] [Google Scholar]
  9. Machuca E, Benoit G, Antignac C. Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum Mol Genet 2009 ; 18 : R185–R194. [CrossRef] [PubMed] [Google Scholar]
  10. Smeets B, Kuppe C, Sicking EM, et al. Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J Am Soc Nephrol 2011 ; 22 : 1262–1274. [Google Scholar]
  11. Hewitson TD. Renal tubulointerstitial fibrosis: common but never simple. Am J Physiol Renal Physiol 2009 ; 296 : F1239–F1244. [CrossRef] [PubMed] [Google Scholar]
  12. Pillebout E, Weitzman JB, Burtin M, et al. JunD protects against chronic kidney disease by regulating paracrine mitogens. J Clin Invest 2003 ; 112 : 843–852. [CrossRef] [PubMed] [Google Scholar]
  13. Sanz AB, Santamaría B, Ruiz-Ortega M, et al. Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol 2008 ; 19 : 1634–1642. [CrossRef] [PubMed] [Google Scholar]
  14. Humphreys BD, Lin S-L, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010 ; 176 : 85–97. [CrossRef] [PubMed] [Google Scholar]
  15. Kang HM, Ahn SH, Choi P, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 2015 ; 21 : 37–46. [CrossRef] [PubMed] [Google Scholar]
  16. Chung KW, Dhillon P, Huang S, et al. Mitochondrial Damage and Activation of the STING Pathway Lead to Renal Inflammation and Fibrosis. Cell Metab 2019 ; 30 : 784–99.e5. [CrossRef] [PubMed] [Google Scholar]
  17. Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002 ; 3 : 349–363. [CrossRef] [PubMed] [Google Scholar]
  18. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003 ; 112 : 1776–1784. [CrossRef] [PubMed] [Google Scholar]
  19. Zeisberg EM, Potenta SE, Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 2008 ; 19 : 2282–2287. [CrossRef] [PubMed] [Google Scholar]
  20. Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy?. J Clin Invest 2011 ; 121 : 468–474. [CrossRef] [PubMed] [Google Scholar]
  21. Grande MT, Sánchez-Laorden B, López-Blau C, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 2015 ; 21 : 989–997. [CrossRef] [PubMed] [Google Scholar]
  22. Lovisa S, LeBleu VS, Tampe B, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 2015 ; 21 : 998–1009. [CrossRef] [PubMed] [Google Scholar]
  23. Fine LG, Orphanides C, Norman JT. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int Suppl 1998 ; 65 : S74–S78. [PubMed] [Google Scholar]
  24. Higgins DF, Kimura K, Bernhardt WM, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 2007 ; 117 : 3810–3820. [PubMed] [Google Scholar]
  25. Mitch WE, Walser M, Buffington GA, et al. A simple method of estimating progression of chronic renal failure. Lancet 1976 ; 2 : 1326–1328. [CrossRef] [Google Scholar]
  26. Brenner BM. Remission of renal disease: recounting the challenge, acquiring the goal. J Clin Invest 2002 ; 110 : 1753–1758. [CrossRef] [PubMed] [Google Scholar]
  27. Wolf G, Neilson EG. Molecular mechanisms of tubulointerstitial hypertrophy and hyperplasia. Kidney Int 1991 ; 39 : 401–420. [CrossRef] [PubMed] [Google Scholar]
  28. Denic A, Mathew J, Lerman LO, et al. Single-Nephron Glomerular Filtration Rate in Healthy Adults. N Engl J Med 2017 ; 376 : 2349–2357. [CrossRef] [PubMed] [Google Scholar]
  29. Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 2015 ; 26 : 258–269. [CrossRef] [PubMed] [Google Scholar]
  30. Franke TF. Intracellular signaling by Akt: bound to be specific. Sci Signal 2008; 1 : pe29. [CrossRef] [PubMed] [Google Scholar]
  31. Canaud G, Bienaimé F, Viau A, et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nat Med 2013 ; 19 : 1288–1296. [CrossRef] [PubMed] [Google Scholar]
  32. Cravedi P, Ruggenenti P, Remuzzi G. Proteinuria should be used as a surrogate in CKD. Nat Rev Nephrol 2012 ; 8 : 301–306. [CrossRef] [PubMed] [Google Scholar]
  33. Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. J Am Soc Nephrol 2012 ; 23 : 1917–1928. [CrossRef] [PubMed] [Google Scholar]
  34. El Karoui K, Viau A, Dellis O, et al. Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2. Nat Commun 2016 ; 7 : 10330. [CrossRef] [PubMed] [Google Scholar]
  35. Bolignano D, Lacquaniti A, Coppolino G, et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol 2009 ; 4 : 337–344. [CrossRef] [PubMed] [Google Scholar]
  36. Anagnostou A, Vercellotti G, Barone J, et al. Factors which affect erythropoiesis in partially nephrectomized and sham-operated rats. Blood 1976 ; 48 : 425–433. [CrossRef] [PubMed] [Google Scholar]
  37. Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 2006 ; 116 : 288–296. [CrossRef] [PubMed] [Google Scholar]
  38. Kok HM, Falke LL, Goldschmeding R, et al. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 2014 ; 10 : 700–711. [CrossRef] [PubMed] [Google Scholar]
  39. Wilson KJ, Gilmore JL, Foley J, et al. Functional selectivity of EGF family peptide growth factors: implications for cancer. Pharmacol Ther 2009 ; 122 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  40. Lautrette A, Li S, Alili R, et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 2005 ; 11 : 867–874. [CrossRef] [PubMed] [Google Scholar]
  41. Terzi F, Burtin M, Hekmati M, et al. Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury. J Clin Invest 2000 ; 106 : 225–234. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.